login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A239930
Number of distinct quarter-squares dividing n.
4
1, 2, 1, 3, 1, 3, 1, 3, 2, 2, 1, 5, 1, 2, 1, 4, 1, 4, 1, 4, 1, 2, 1, 5, 2, 2, 2, 3, 1, 4, 1, 4, 1, 2, 1, 7, 1, 2, 1, 4, 1, 4, 1, 3, 2, 2, 1, 6, 2, 3, 1, 3, 1, 4, 1, 4, 1, 2, 1, 7, 1, 2, 2, 5, 1, 3, 1, 3, 1, 2, 1, 8, 1, 2, 2, 3, 1, 3, 1, 5, 3, 2, 1, 6, 1, 2, 1, 3, 1, 6, 1, 3, 1, 2, 1, 6, 1, 3, 2, 6, 1, 3, 1, 3, 1, 2, 1, 7, 1, 3
OFFSET
1,2
COMMENTS
For more information about the quarter-squares see A002620.
LINKS
Wikipedia, Table of divisors.
FORMULA
a(n) = Sum_{k=1..A000005(n)} A240025(A027750(n,k)). - Reinhard Zumkeller, Jul 05 2014
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(2) + 1 = A013661 + 1 = 2.644934... . - Amiram Eldar, Dec 31 2023
EXAMPLE
For n = 12 the quarter-squares <= 12 are [0, 0, 1, 2, 4, 6, 9, 12]. There are five quarter-squares that divide 12; they are [1, 2, 4, 6, 12], so a(12) = 5.
MAPLE
isA002620 := proc(n)
local k, qsq ;
for k from 0 do
qsq := floor(k^2/4) ;
if n = qsq then
return true;
elif qsq > n then
return false;
end if;
end do:
end proc:
A239930 := proc(n)
local a, d ;
a :=0 ;
for d in numtheory[divisors](n) do
if isA002620(d) then
a:= a+1 ;
end if;
end do:
a;
end proc: # R. J. Mathar, Jul 03 2014
MATHEMATICA
qsQ[n_] := AnyTrue[Range[Ceiling[2 Sqrt[n]]], n == Floor[#^2/4]&]; a[n_] := DivisorSum[n, Boole[qsQ[#]]&]; Array[a, 110] (* Jean-François Alcover, Feb 12 2018 *)
PROG
(Haskell)
a239930 = sum . map a240025 . a027750_row
-- Reinhard Zumkeller, Jul 05 2014
(PARI) a(n) = sumdiv(n, d, issquare(d) + issquare(4*d + 1)); \\ Amiram Eldar, Dec 31 2023
KEYWORD
nonn
AUTHOR
Omar E. Pol, Jun 19 2014
STATUS
approved