login
A239527
Numbers k^2 + (k+1)^2 that can be expressed as a sum of two squares in exactly one other way.
1
85, 145, 221, 265, 365, 481, 545, 685, 1405, 1513, 1985, 2245, 2813, 2965, 3281, 3785, 3961, 4141, 4705, 5305, 5513, 5941, 6161, 6385, 6613, 7081, 7813, 8065, 8321, 9113, 9385, 10805, 11101, 11401, 11705, 12013, 12961, 13285, 13945, 16021, 17113, 17861, 19405
OFFSET
1,1
COMMENTS
Subsequence of A166080.
LINKS
FORMULA
Each number is of the form 2y^2 + 2y + 1.
EXAMPLE
365 is in the sequence because 365 = 2^2+19^2 = 13^2+14^2; in the second representation 14-13=1.
MATHEMATICA
ok[n_] := 2 == Count[ PowersRepresentations[n, 2, 2], _?(! MemberQ[#, 0] &)]; Select[(2*#^2 + 2*# + 1) & /@ Range[100], ok] (* Giovanni Resta, Mar 21 2014 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Carmine Suriano, Mar 21 2014
STATUS
approved