OFFSET
1,2
COMMENTS
Equivalently, a(n) equals the number of values of m such that each value of A238689 T(m,k) <= A238689 T(n,k). (Since the prime factorization of 1 is the empty factorization, we consider each prime_1(i) not to be greater than prime_n(i) for all positive integers n.)
Suppose we say that n "covers" m iff both m and n are factorized as described in the sequence definition and each prime_m(i) <= prime_n(i). At least three sequences (A037019, A108951 and A181821) have the property that a(m) divides a(n) iff n "covers" m. These sequences are also divisibility sequences (i.e., sequences with the property that a(m) divides a(n) if m divides n), since any positive integer "covers" each of its divisors.
For any positive integers m and k, the following integer sequences (with n >= 0) are arithmetic progressions:
1. The sequence b(n) = a(m*(2^n)).
2. The sequence b(n) = a(m*(prime(n+k))) if prime(k) >= A006530(m).
Also, a(n) = the number of distinct prime signatures that occur among the divisors of any integer m such that A181819(m) = n and/or A238745(m) = n.
Number of skew partitions whose numerator has Heinz number n, where a skew partition is a pair y/v of integer partitions such that the diagram of v fits inside the diagram of y. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). - Gus Wiseman, Feb 24 2018
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
FORMULA
EXAMPLE
The prime factorizations of integers 1 through 9, with prime factors sorted from largest to smallest:
1 - the empty factorization (no prime factors)
2 = 2
3 = 3
4 = 2*2
5 = 5
6 = 3*2
7 = 7
8 = 2*2*2
9 = 3*3
To find a(9), we consider 9 = 3*3. There are 6 positive integers (1, 2, 3, 4, 6 and 9) which satisfy the following criteria:
1) The largest prime factor, if one exists, is not greater than 3;
2) The second-largest prime factor, if one exists, is not greater than 3;
3) The total number of prime factors (counting repeated factors) does not exceed 2.
Therefore, a(9) = 6.
From Gus Wiseman, Feb 24 2018: (Start)
Heinz numbers of the a(15) = 9 partitions contained within the partition (32) are 1, 2, 3, 4, 5, 6, 9, 10, 15. The a(15) = 9 skew partitions are (32)/(), (32)/(1), (32)/(11), (32)/(2), (32)/(21), (32)/(22), (32)/(3), (32)/(31), (32)/(32).
Corresponding diagrams are:
o o o . o o . o o . . o . . o . . o . . . . . . . . .
o o o o . o o o . o . . o o . o . . (End)
MATHEMATICA
undptns[y_]:=Select[Tuples[Range[0, #]&/@y], OrderedQ[#, GreaterEqual]&];
primeMS[n_]:=If[n===1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Table[Length[undptns[Reverse[primeMS[n]]]], {n, 100}] (* Gus Wiseman, Feb 24 2018 *)
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Matthew Vandermast, Apr 28 2014
STATUS
approved