OFFSET
1,7
COMMENTS
Also the number of partitions into distinct parts with minimal part >= 2 and difference between parts >= 3. [Joerg Arndt, Mar 31 2014]
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..1000
FORMULA
G.f. with a(0)=0: sum(n>=0, q^(n*(3*n+1)/2) / prod(k=1..n, 1-q^k ) ). [Joerg Arndt, Mar 09 2014]
a(n) ~ c^(1/4) * exp(2*sqrt(c*n)) / (2*sqrt(Pi*(1 + 3*r^2)) * n^(3/4)), where r = A263719 and c = 3*(log(r))^2/2 + polylog(2, 1-r). - Vaclav Kotesovec, Jan 15 2022
EXAMPLE
a(9) = 3 counts these partitions: 9, 63, 54.
MATHEMATICA
z = 50; q[n_] := q[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &];
p1[p_] := p1[p] = DeleteDuplicates[p]; t[p_] := t[p] = Length[p1[p]]
Table[Count[q[n], p_ /; Min[p] < t[p]], {n, z}] (* A237976 *)
Table[Count[q[n], p_ /; Min[p] <= t[p]], {n, z}] (* A237977 *)
Table[Count[q[n], p_ /; Min[p] == t[p]], {n, z}] (* A096401 *)
Table[Count[q[n], p_ /; Min[p] > t[p]], {n, z}] (* A237979 *)
Table[Count[q[n], p_ /; Min[p] >= t[p]], {n, z}] (* A025157 *)
PROG
(PARI) N=66; q='q+O('q^N); Vec(-1+sum(n=0, N, q^(n*(3*n+1)/2) / prod(k=1, n, 1-q^k ) )) \\ Joerg Arndt, Mar 09 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Feb 18 2014
STATUS
approved