login
A237979
Number of strict partitions of n such that (least part) > number of parts.
6
0, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 7, 7, 9, 10, 12, 13, 16, 17, 20, 22, 25, 28, 32, 35, 40, 45, 50, 56, 63, 70, 78, 87, 96, 107, 118, 131, 144, 160, 175, 194, 213, 235, 257, 284, 310, 342, 373, 410, 447, 491, 534, 585, 637, 696, 756, 826, 896, 977, 1060, 1153, 1250, 1359, 1471, 1597, 1729, 1874, 2026, 2195, 2371, 2565
OFFSET
1,7
COMMENTS
Also the number of partitions into distinct parts with minimal part >= 2 and difference between parts >= 3. [Joerg Arndt, Mar 31 2014]
LINKS
FORMULA
G.f. with a(0)=0: sum(n>=0, q^(n*(3*n+1)/2) / prod(k=1..n, 1-q^k ) ). [Joerg Arndt, Mar 09 2014]
a(n) ~ c^(1/4) * exp(2*sqrt(c*n)) / (2*sqrt(Pi*(1 + 3*r^2)) * n^(3/4)), where r = A263719 and c = 3*(log(r))^2/2 + polylog(2, 1-r). - Vaclav Kotesovec, Jan 15 2022
a(n) ~ A263719 * A025157(n). - Vaclav Kotesovec, Jan 15 2022
EXAMPLE
a(9) = 3 counts these partitions: 9, 63, 54.
MATHEMATICA
z = 50; q[n_] := q[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &];
p1[p_] := p1[p] = DeleteDuplicates[p]; t[p_] := t[p] = Length[p1[p]]
Table[Count[q[n], p_ /; Min[p] < t[p]], {n, z}] (* A237976 *)
Table[Count[q[n], p_ /; Min[p] <= t[p]], {n, z}] (* A237977 *)
Table[Count[q[n], p_ /; Min[p] == t[p]], {n, z}] (* A096401 *)
Table[Count[q[n], p_ /; Min[p] > t[p]], {n, z}] (* A237979 *)
Table[Count[q[n], p_ /; Min[p] >= t[p]], {n, z}] (* A025157 *)
PROG
(PARI) N=66; q='q+O('q^N); Vec(-1+sum(n=0, N, q^(n*(3*n+1)/2) / prod(k=1, n, 1-q^k ) )) \\ Joerg Arndt, Mar 09 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Feb 18 2014
STATUS
approved