OFFSET
0,3
COMMENTS
Normally the OEIS excludes sequences in which every other term is zero. But there are exceptions for especially important sequences like this one. - N. J. A. Sloane, Feb 27 2014
Essentially the factorial expansion of exp(-1): exp(-1) = Sum_{n>=1} a(n)/(n+1)!. - Joerg Arndt, Mar 13 2014
a(n) is the number of m < n for which a(m) has the same parity as n. For instance, a(4) = 4 because 4 has the same parity as a(0), a(1), a(2), and a(3). - Alec Jones, May 16 2016
This sequence is an example of a sequence that has no limit while the Cesàro means limit is infinite. See A354280 for further information. - Bernard Schott, May 22 2022
REFERENCES
J. M. Arnaudiès, P. Delezoide et H. Fraysse, Exercices résolus d'Analyse du cours de mathématiques - 2, Dunod, Exercice 10, pp. 14-16.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000 (corrected by Ray Chandler, Jan 19 2019).
ProofWiki, Cesàro mean.
Wikipedia, Ernesto Cesàro.
Wikipédia, Lemme de Cesàro (in French).
Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1).
FORMULA
O.g.f.: 2*x^2/(1-x^2)^2.
E.g.f.: x*sinh(x). - Robert Israel, Aug 27 2015
a(n) = 2*a(n-2) - a(n-4) for n>4.
a(n) = 2*A142150(n) = (1+(-1)^n)*n/2 = n*((n-1) mod 2).
a(n) = floor(n^(-1)^n) for n>1. - Ilya Gutkovskiy, Aug 27 2015
Sum_{i=1..n} a(i) = A110660(n). - Bruno Berselli, Feb 27 2014
a(n) = -1 + ceiling((n + 1)^(sin(Pi*n/2) + cos(Pi*n))). - Lechoslaw Ratajczak, Nov 06 2016
MAPLE
seq(op([0, 2*i]), i=1..30); # Robert Israel, Aug 27 2015
MATHEMATICA
Table[If[OddQ[n], 0, n], {n, 80}]
CoefficientList[Series[2 x /(1 - x^2)^2, {x, 0, 80}], x]
LinearRecurrence[{0, 2, 0, -1}, {0, 0, 2, 0}, 75] (* Robert G. Wilson v, Nov 11 2016 *)
Riffle[Range[0, 80, 2], 0] (* Harvey P. Dale, Mar 16 2021 *)
PROG
(Magma) [IsOdd(n) select 0 else n: n in [1..80]];
(Magma) [(1+(-1)^n)*n/2: n in [1..80]];
(Magma) &cat [[n, 0]: n in [0..80 by 2]]; // Bruno Berselli, Nov 11 2016
(PARI) a(n)=if(n%2==0, n, 0) \\ Anders Hellström, Aug 27 2015
(Python) def a(n): return 0 if n%2 else n # Michael S. Branicky, Jun 05 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Feb 24 2014
EXTENSIONS
Edited by Bruno Berselli, Feb 27 2014
STATUS
approved