Cesàro Mean
Jump to navigation
Jump to search
Theorem
Let $\sequence {a_n}$ be a sequence of complex numbers.
Suppose that $\sequence {a_n}$ converges to $\ell$ in $\C$:
- $\ds \lim_{n \mathop \to \infty} a_n = \ell$
Then also:
- $\ds \lim_{n \mathop \to \infty} \frac {a_1 + \dotsb + a_n} n = \ell$
Proof
For every fixed integer $n_0$, we write:
- $\ds \cmod {\frac {a_1 + \dotsb + a_n} n - \ell} \le \frac {\cmod {a_1 - \ell} + \dotsb + \cmod {a_n - \ell} } n \le \frac {n_0 \ds \sup_{k \mathop \le n_0} \cmod {a_k - \ell} } n + \sup_{n_0 \mathop < k \mathop \le n} \cmod {a_k - \ell}$
As $n$ tends to $+\infty$, we get:
- $\ds \limsup_{n \mathop \to \infty} \cmod {\frac {a_1 + \dotsb + a_n} n - \ell} \le \sup_{k \mathop > n_0} \cmod {a_k - \ell}$
As $n_0$ tends to $+\infty$, we finally conclude:
- $\ds \limsup_{n \mathop \to \infty} \cmod {\frac {a_1 + \dotsb + a_n} n - \ell} = 0$
$\blacksquare$
This article, or a section of it, needs explaining. In particular: More detailed justification and explanation of all the steps You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by explaining it. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Explain}} from the code. |
Remarks
This page or section has statements made on it that ought to be extracted and proved in a Theorem page. In particular: Need to split off the case for normed vector spaces You can help $\mathsf{Pr} \infty \mathsf{fWiki}$ by creating any appropriate Theorem pages that may be needed. To discuss this page in more detail, feel free to use the talk page. |
- The theorem and its proof hold in any normed vector space.
- When working with an arbitrary sequence $\sequence {a_n}$ of real numbers, the same truncation trick leads to:
- $\ds \liminf_{n \mathop \to \infty} a_n \le \liminf_{n \mathop \to \infty} \frac {a_1 + \dotsb + a_n} n \le \limsup_{n \mathop \to \infty} \frac {a_1 + \dotsb + a_n} n \le \limsup_{n \mathop \to \infty} a_n$
As a corollary, the conclusion of the theorem holds in the real case when $\ell = \pm \infty$.
Source of Name
This entry was named for Ernesto Cesàro.