login
A235594
Coefficient of q^4 in the polynomial NT_{n,mu}(q).
2
2, 23, 135, 561, 1870, 5328, 13476, 31020, 66132, 132275, 250679, 453609, 788580, 1323688, 2154240, 3410880, 5269422, 7962615, 11794079, 17154665, 24541506, 34580040, 48049300, 65910780, 89341200, 119769507, 158918463, 208851185, 272023016, 351339120
OFFSET
5,1
COMMENTS
See Jones et al. (2013) for precise definition.
LINKS
M. Jones, S. Kitaev, J. Remmel, Frame patterns in n-cycles, arXiv preprint arXiv:1311.3332, 2013
Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
FORMULA
G.f.: -x^5*(2+5*x+6*x^3+x^4) / ( (x-1)^9 ). - R. J. Mathar, Apr 23 2015
MAPLE
A235594 := proc(n)
2*binomial(n-1, 4)
+13*binomial(n-1, 5)
+27*binomial(n-1, 6)
+29*binomial(n-1, 7)
+14*binomial(n-1, 8) ;
end proc:
seq(A235594(n), n=5..50) ; # R. J. Mathar, Apr 23 2015
MATHEMATICA
a[n_] := 2*Binomial[n-1, 4] + 13*Binomial[n-1, 5] + 27*Binomial[n-1, 6] + 29*Binomial[n-1, 7] + 14*Binomial[n-1, 8];
Table[a[n], {n, 5, 50}] (* Jean-François Alcover, Nov 26 2017, after R. J. Mathar *)
CROSSREFS
Cf. A235593.
Sequence in context: A185830 A301665 A193981 * A053299 A356828 A220239
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jan 13 2014
STATUS
approved