login
A235508
Number of ways to write 2*n = p + q with q > 0 such that p, p*(p+1) - prime(p) and prime(q) - q + 1 are all prime.
3
0, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 3, 4, 1, 2, 5, 4, 4, 2, 3, 3, 6, 1, 3, 5, 4, 3, 4, 3, 2, 4, 4, 3, 5, 3, 4, 4, 3, 3, 4, 4, 5, 4, 1, 2, 6, 1, 3, 4, 3, 5, 6, 1, 2, 4, 2, 4, 2, 1, 3, 7, 3, 3, 6, 4, 5, 6, 2, 3, 7, 3, 5, 4, 6, 4, 8, 3, 5, 2, 6, 4, 6
OFFSET
1,2
COMMENTS
Conjecture: a(n) > 0 for all n > 1.
EXAMPLE
a(7) = 1 since 2*7 = 11 + 3 with 11, 11*12 - prime(11) = 101 and prime(3) - 3 + 1 = 3 all prime.
a(19) = 1 since 2*19 = 37 + 1 with 37, 37*38 - prime(37) = 1249 and prime(1) - 1 + 1 = 2 all prime.
a(98) = 1 since 2*98 = 11 + 185 with 11, 11*12 - prime(11) = 101 and prime(185) - 185 + 1 = 919 all prime.
MATHEMATICA
p[k_]:=PrimeQ[Prime[k](Prime[k]+1)-Prime[Prime[k]]]
q[m_]:=PrimeQ[Prime[m]-m+1]
a[n_]:=Sum[If[p[k]&&q[2n-Prime[k]], 1, 0], {k, 1, PrimePi[2n-1]}]
Table[a[n], {n, 1, 100}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jan 14 2014
STATUS
approved