login
A234851
Indices of primes in A014692, i.e., numbers k such that prime(k)-k+1 is prime.
5
1, 2, 3, 5, 7, 13, 17, 21, 23, 25, 31, 41, 43, 49, 61, 71, 77, 83, 89, 103, 105, 109, 121, 129, 133, 139, 151, 161, 173, 181, 183, 185, 189, 199, 211, 213, 223, 231, 235, 241, 243, 247, 265, 271, 273, 277, 279, 281, 285, 293, 301, 303, 307, 311, 317
OFFSET
1,2
COMMENTS
Sequence A234695 lists primes in this sequence.
LINKS
FORMULA
a(n) = PrimePi(A234850(n)), PrimePi = A000720.
MAPLE
select(k -> isprime(ithprime(k)-k+1), [$1..1000]); # Robert Israel, Feb 19 2021
PROG
(PARI) for(k=1, 999, isprime(prime(k)-k+1)&&print1(k", "))
(PARI) is_A234851(n)=isprime(prime(k)-k+1)
CROSSREFS
KEYWORD
nonn
AUTHOR
M. F. Hasler, Dec 31 2013
STATUS
approved