login
A235048
Permutation of nonnegative integers: a(n) = A234840(A235199(n)+1) - 1.
4
0, 2, 1, 8, 18, 26, 60, 5, 3, 56, 37, 11, 280, 182, 10, 32, 100, 17, 4, 170, 28, 80, 1158, 53, 360, 1082, 7, 548, 121, 98, 156, 341, 21, 2528, 262, 35, 1810, 14, 561, 512, 9, 365, 58, 113, 525, 728, 408, 5432, 3720, 842, 43, 302, 540, 23, 208, 1025, 1090, 86, 57
OFFSET
0,2
COMMENTS
Let b(n)=a(n), but with instead of a(3)=8 and a(4)=18, define b(3)=18 and b(4)=8 (i.e. otherwise same, but the values in positions 3 and 4 are swapped). The sequence b is then the permutation induced when A234744 is restricted to primes, and the indices of the reordered primes are collected: We have A049084(A234744(A000040(n))) = b(n) for all n. Or in other words, the permutation b completely determines the permutation A234744, because the latter is multiplicative. (Please see also comments there and at A234743.)
FORMULA
a(n) = A234840(A235199(n)+1) - 1.
PROG
(Scheme) (define (A235048 n) (- (A234840 (+ 1 (A235199 n))) 1))
CROSSREFS
Inverse: A235047. Cf. A234840, A235199, A234744.
Sequence in context: A089925 A235047 A120945 * A013118 A012961 A013124
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 10 2014
STATUS
approved