login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A233757
Triangle read by rows: T(n,k) = (2^n-1)*2^(k-1), for n >= 1 and 1<=k<=n.
1
1, 3, 6, 7, 14, 28, 15, 30, 60, 120, 31, 62, 124, 248, 496, 63, 126, 252, 504, 1008, 2016, 127, 254, 508, 1016, 2032, 4064, 8128, 255, 510, 1020, 2040, 4080, 8160, 16320, 32640, 511, 1022, 2044, 4088, 8176, 16352, 32704, 65408, 130816, 1023, 2046, 4092
OFFSET
1,2
COMMENTS
Column 1 gives the positive terms of A000225.
Leading diagonal gives the positive terms of A006516.
The sum of row n is T(n,1)^2 = A000225(n)^2, hence row sums give A060867.
If n = A000043(m) then T(n,1) = A000668(m) and row n lists last n divisors of m-th even perfect number, which are also the divisors that are multiples of m-th Mersenne prime, for m >= 1.
If n = A000043(m) then T(n,n) = A000396(m), assuming there are no odd perfect numbers, for m >= 1.
LINKS
FORMULA
T(n,k) = A000225(n)*A000079(k-1), n >= 1, 1<=k<=n.
EXAMPLE
Triangle begins:
1;
3, 6;
7, 14, 28;
15, 30, 60, 120;
31, 62, 124, 248, 496;
63, 126, 252, 504, 1008, 2016;
127, 254, 508, 1016, 2032, 4064, 8128;
255, 510, 1020, 2040, 4080, 8160, 16320, 32640;
511, 1022, 2044, 4088, 8176, 16352, 32704, 65408, 130816;
...
MATHEMATICA
Table[(2^n-1)2^(k-1), {n, 10}, {k, n}]//Flatten (* Harvey P. Dale, Oct 10 2018 *)
KEYWORD
nonn,tabl
AUTHOR
Omar E. Pol, Jan 12 2014
STATUS
approved