login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A233653
T(n,k)=Number of (n+1)X(k+1) 0..5 arrays with every 2X2 subblock having the sum of the squares of the edge differences equal to 14 (14 maximizes T(1,1))
9
144, 772, 772, 3984, 5232, 3984, 20936, 36784, 36784, 20936, 108864, 272564, 364512, 272564, 108864, 570208, 2012472, 3945444, 3945444, 2012472, 570208, 2971200, 15071680, 42895672, 64384744, 42895672, 15071680, 2971200, 15541312, 112180004
OFFSET
1,1
COMMENTS
Table starts
.......144.........772..........3984............20936.............108864
.......772........5232.........36784...........272564............2012472
......3984.......36784........364512..........3945444...........42895672
.....20936......272564.......3945444.........64384744.........1066468816
....108864.....2012472......42895672.......1066468816........27145405344
....570208....15071680.....478087900......18298607052.......724755509708
...2971200...112180004....5291663768.....311919115144.....19199171263648
..15541312...840367588...59202020744....5398974995872....519677244552168
..81063040..6267926076..658067704512...92678590515300..13905091332351288
.423704496.46922305260.7360796797308.1605489993650956.377054658397332732
LINKS
FORMULA
Empirical for column k:
k=1: [linear recurrence of order 9]
k=2: [order 38]
EXAMPLE
Some solutions for n=2 k=4
..3..2..3..3..4....0..3..5..4..5....0..3..0..3..4....2..3..3..0..1
..3..0..0..1..4....0..2..2..2..5....0..2..2..3..1....0..0..1..0..3
..3..2..3..3..3....0..3..0..3..3....3..3..5..3..4....1..3..3..0..1
CROSSREFS
Sequence in context: A233897 A250428 A033696 * A233646 A268806 A112067
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 14 2013
STATUS
approved