login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A233137
Reversed shortest (x+1,2x)-code of n.
4
1, 2, 12, 22, 122, 212, 1212, 222, 1222, 2122, 12122, 2212, 12212, 21212, 121212, 2222, 12222, 21222, 121222, 22122, 122122, 212122, 1212122, 22212, 122212, 212212, 1212212, 221212, 1221212, 2121212, 12121212, 22222, 122222, 212222, 1212222, 221222, 1221222
OFFSET
1,2
COMMENTS
(See A233135.)
LINKS
FORMULA
Define h(x) = x - 1 if x is odd and h(x) = x/2 if x is even, and define H(x,1) = h(x) and H(x,k) = H(H(x,k-1)). For each n > 1, the sequence (H(n,k)) decreases to 1 through two kinds of steps; write 1 when the step is x - 1 and write 2 when the step is x/2. A233137(n) is the concatenation of 1s and 2s, as in the Mathematica program.
MATHEMATICA
b[x_] := b[x] = If[OddQ[x], x - 1, x/2]; u[n_] := 2 - Mod[Drop[FixedPointList[b, n], -3], 2]; u[1] = {1}; t = Table[u[n], {n, 1, 30}]; Table[FromDigits[u[n]], {n, 1, 50}] (* A233137 *)
Flatten[t] (* A233138 *)
Table[FromDigits[Reverse[u[n]]], {n, 1, 30}] (* A233135 *)
Flatten[Table[Reverse[u[n]], {n, 1, 30}]] (* A233136 *)
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Dec 05 2013
STATUS
approved