login
A229892
Number T(n,k) of k up, k down permutations of [n]; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
14
1, 1, 1, 0, 1, 1, 0, 2, 1, 1, 0, 5, 3, 1, 1, 0, 16, 6, 4, 1, 1, 0, 61, 26, 10, 5, 1, 1, 0, 272, 71, 20, 15, 6, 1, 1, 0, 1385, 413, 125, 35, 21, 7, 1, 1, 0, 7936, 1456, 461, 70, 56, 28, 8, 1, 1, 0, 50521, 10576, 1301, 574, 126, 84, 36, 9, 1, 1
OFFSET
0,8
COMMENTS
T(n,k) is defined for n,k >= 0. The triangle contains only the terms with k<=n. T(n,k) = T(n,n) = A000012(n) = 1 for k>n.
T(2*n,n) = C(2*n-1,n) = A088218(n) = A001700(n-1) for n>0.
T(2*n+1,n) = C(2*n,n) = A000984(n).
T(2*n+1,n+1) = C(2n,n-1) = A001791(n) for n>0.
LINKS
FORMULA
T(7,3) = 20: 1237654, 1247653, 1257643, 1267543, 1347652, 1357642, 1367542, 1457632, 1467532, 1567432, 2347651, 2357641, 2367541, 2457631, 2467531, 2567431, 3457621, 3467521, 3567421, 4567321.
EXAMPLE
Triangle T(n,k) begins:
1;
1, 1;
0, 1, 1;
0, 2, 1, 1;
0, 5, 3, 1, 1;
0, 16, 6, 4, 1, 1;
0, 61, 26, 10, 5, 1, 1;
0, 272, 71, 20, 15, 6, 1, 1;
0, 1385, 413, 125, 35, 21, 7, 1, 1;
MAPLE
b:= proc(u, o, t, k) option remember; `if`(u+o=0, 1, add(`if`(t=k,
b(o-j, u+j-1, 1, k), b(u+j-1, o-j, t+1, k)), j=1..o))
end:
T:= (n, k)-> `if`(k+1>=n, 1, `if`(k=0, 0, b(0, n, 0, k))):
seq(seq(T(n, k), k=0..n), n=0..10);
MATHEMATICA
b[u_, o_, t_, k_] := b[u, o, t, k] = If[u+o == 0, 1, Sum[If[t == k, b[o-j, u+j-1, 1, k], b[u+j-1, o-j, t+1, k]], {j, 1, o}]]; t[n_, k_] := If[k+1 >= n, 1, If[k == 0, 0, b[0, n, 0, k]]]; Table[Table[t[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Dec 17 2013, translated from Maple *)
CROSSREFS
KEYWORD
nonn,tabl,eigen
AUTHOR
Alois P. Heinz, Oct 02 2013
STATUS
approved