login
A198237
Decimal expansion of greatest x having 3*x^2+4x=cos(x).
3
2, 1, 1, 0, 4, 7, 2, 9, 4, 4, 9, 0, 0, 4, 0, 2, 8, 4, 2, 0, 8, 2, 1, 9, 2, 9, 2, 6, 6, 0, 1, 9, 0, 8, 2, 8, 8, 0, 8, 4, 5, 8, 3, 4, 0, 1, 0, 3, 0, 2, 3, 9, 4, 9, 9, 4, 3, 9, 5, 2, 1, 7, 4, 2, 3, 5, 6, 7, 1, 9, 7, 8, 1, 2, 9, 8, 7, 1, 4, 9, 3, 9, 2, 3, 8, 1, 5, 5, 4, 6, 8, 2, 7, 8, 7, 6, 1, 0, 7
OFFSET
0,1
COMMENTS
See A197737 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least x: -1.379323320986887658637256189560173787662...
greatest x: 0.2110472944900402842082192926601908288...
MATHEMATICA
a = 3; b = 4; c = 1;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, -2, 1}]
r1 = x /. FindRoot[f[x] == g[x], {x, -1.4, -1.3}, WorkingPrecision -> 110]
RealDigits[r1](* A198236 *)
r2 = x /. FindRoot[f[x] == g[x], {x, .21, .22}, WorkingPrecision -> 110]
RealDigits[r2] (* A198237 *)
CROSSREFS
Cf. A197737.
Sequence in context: A131044 A246027 A077875 * A122049 A238802 A229892
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 23 2011
STATUS
approved