login
A229335
Sum of sums of elements of subsets of divisors of n.
10
1, 6, 8, 28, 12, 96, 16, 120, 52, 144, 24, 896, 28, 192, 192, 496, 36, 1248, 40, 1344, 256, 288, 48, 7680, 124, 336, 320, 1792, 60, 9216, 64, 2016, 384, 432, 384, 23296, 76, 480, 448, 11520, 84, 12288, 88, 2688, 2496, 576, 96, 63488, 228, 2976, 576, 3136, 108
OFFSET
1,2
COMMENTS
Number of nonempty subsets of divisors of n = A100587(n).
LINKS
FORMULA
a(n) = A000203(n) * A100577(n) = A000203(n) * (A100587(n) + 1) / 2 = A000203(n) * 2^(A000005(n) - 1) = sigma(n) * 2^(tau(n) - 1).
a(2^n) = (2^(n+1) - 1) * 2^n.
EXAMPLE
For n = 2^2 = 4; divisors of 4: {1, 2, 4}; nonempty subsets of divisors of n: {1}, {2}, {4}, {1, 2}, {1, 4}, {2, 4}, {1, 2, 4}; sum of sums of elements of subsets = 1 + 2 + 4 + 3 + 5 + 6 + 7 = 28 = (2^3-1) * 2^2 = 7 * 4.
MAPLE
A229335 := proc(n)
numtheory[sigma](n)*A100577(n) ;
end proc:
seq(A229335(n), n=1..100) ; # R. J. Mathar, Nov 10 2017
MATHEMATICA
Table[Total[Flatten[Subsets[Divisors[n]]]], {n, 100}] (* T. D. Noe, Sep 21 2013 *)
CROSSREFS
Cf. A229336 (product of sums of elements of subsets of divisors of n).
Cf. A229337 (sum of products of elements of subsets of divisors of n).
Cf. A229338 (product of products of elements of subsets of divisors of n).
Sequence in context: A374120 A267477 A237290 * A007829 A345003 A000773
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Sep 20 2013
STATUS
approved