login
A228317
The hyper-Wiener index of the triangular graph T(n) (n >= 1).
2
0, 0, 3, 21, 75, 195, 420, 798, 1386, 2250, 3465, 5115, 7293, 10101, 13650, 18060, 23460, 29988, 37791, 47025, 57855, 70455, 85008, 101706, 120750, 142350, 166725, 194103, 224721, 258825, 296670, 338520, 384648, 435336, 490875, 551565, 617715, 689643
OFFSET
1,3
COMMENTS
The triangular graph T(n) is the graph whose vertices represent the 2-subsets of {1,2,...,n} and two vertices are adjacent provided the corresponding 2-subsets have a nonempty intersection.
The triangular graph T(n) is a strongly regular graph with parameters n*(n-1)/2, 2*(n-2), n-2, and 4 (see the Brualdi and Ryser reference, Theorem 5.2.4).
REFERENCES
R. A. Brualdi and H. J. Ryser, Combinatorial Matrix Theory, Cambridge Univ. Press, 1992.
LINKS
G. G. Cash, Relationship between the Hosoya polynomial and the hyper-Wiener index, Applied Mathematics Letters, 15(7) (2002), 893-895.
Eric Weisstein's World of Mathematics, Triangular Graph.
FORMULA
a(n) = n*(n - 1)*(n - 2)*(3*n - 5)/8.
G.f.: 3*x^3*(1 + 2*x)/(1 - x)^5.
The Hosoya-Wiener polynomial of T(n) is (1/8)*n*(n - 1)*(4 + 4*(n-2)*t + (n - 2)*(n - 3)*t^2).
a(n) = 3*A001296(n-2) for n >= 2. - R. J. Mathar, Mar 05 2017
MAPLE
a := proc (n) options operator, arrow: (1/8)*n*(n-1)*(n-2)*(3*n-5) end proc: seq(a(n), n = 1 .. 38);
MATHEMATICA
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 0, 3, 21, 75}, 40] (* Harvey P. Dale, Feb 23 2023 *)
CROSSREFS
Sequence in context: A281008 A238193 A054646 * A322228 A368046 A109721
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Aug 26 2013
STATUS
approved