OFFSET
1,2
COMMENTS
a(n) = A228314(n,n).
LINKS
B. E. Sagan, Y-N. Yeh and P. Zhang, The Wiener Polynomial of a Graph, Internat. J. of Quantum Chem., 60, 1996, 959-969.
FORMULA
a(n) = n^2*(n^2-1)*(7*n^2+12*n-3)/96 if n is odd; a(n) = n^4*(7*n^2+12*n+8)/96 if n is even.
G.f.: 2*x^2*(5 + 26*x + 132*x^2 + 183*x^3 +280*x^4 + 132*x^5 +74*x^6 + 7*x^7 + x^8) / ((1-x)^7*(1+x)^5).
MAPLE
a := proc (n) if `mod`(n, 2) = 1 then (1/96)*n^2*(n^2-1)*(7*n^2+12*n-3) else (1/96)*n^4*(7*n^2+12*n+8) end if end proc: seq(a(n), n = 1 .. 30);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Aug 26 2013
STATUS
approved