OFFSET
1,3
COMMENTS
Row n has A005811(n) terms.
As a sequence, seems to have a particular fractal structure, probably allowing additional formulas.
Row n lists the positions of 1-bits in the binary expansion of the Gray code for n, A003188(n), when 1 is the rightmost position. A003188(17) = 25 = 11001_2 gives row 17: 1,4,5. - Alois P. Heinz, Feb 01 2023
LINKS
Antti Karttunen, The rows 1..1023 of the table, flattened
Wikipedia, Gray code
FORMULA
EXAMPLE
Table begins as:
Row n in Terms on
n binary that row
1 1 1;
2 10 1,2;
3 11 2;
4 100 2,3;
5 101 1,2,3;
6 110 1,3;
7 111 3;
8 1000 3,4;
9 1001 1,3,4;
10 1010 1,2,3,4;
11 1011 2,3,4;
12 1100 2,4;
13 1101 1,2,4;
14 1110 1,4;
15 1111 4;
16 10000 4,5;
etc.
The terms also give the partial sums of runlengths, when the binary expansion of n is scanned from the least significant to the most significant end.
MAPLE
T:= n-> (l-> seq(`if`(l[i]=1, i, [][]), i=1..nops(l)))(
Bits[Split](Bits[Xor](n, iquo(n, 2)))):
seq(T(n), n=1..50); # Alois P. Heinz, Feb 01 2023
MATHEMATICA
Table[Rest@FoldList[Plus, 0, Length/@Split[Reverse[IntegerDigits[n, 2]]]], {n, 34}]//Flatten (Wouter Meeussen, Aug 31 2013)
PROG
CROSSREFS
KEYWORD
nonn,base,tabf
AUTHOR
Antti Karttunen, Jul 25 2013
STATUS
approved