login
A227574
Denominators of rationals with e.g.f. D(4,x), a Debye function.
4
1, 5, 9, 1, 60, 1, 105, 1, 90, 1, 231, 1, 10920, 1, 27, 1, 2550, 1, 4389, 1, 1980, 1, 897, 1, 19110, 1, 45, 1, 6960, 1, 121737, 1, 4590, 1, 57, 1, 19191900, 1, 63, 1, 148830, 1, 20769, 1, 8280, 1, 3525, 1, 603330, 1, 891, 1, 22260, 1, 11571, 1, 13050, 1
OFFSET
0,2
COMMENTS
See the comments and the Abramowitz-Stegun link under A227573.
FORMULA
a(n) = denominator(4*B(n)/(n+4)), n >= 0, with the Bernoulli numbers B(n) = A027641(n)/A027642(n).
The e.g.f. of the rationals r(4,n) := 4*B(n)/(n+4) is D(4,x) = (4/x^4)*int(t^4/(exp(t) - 1), t=0..x).
EXAMPLE
The rationals r(4,n), n=0..15 are: 1, -2/5, 1/9, 0, -1/60, 0, 1/105, 0, -1/90, 0, 5/231, 0, -691/10920, 0, 7/27, 0.
MATHEMATICA
A227574[n_]:=Denominator[4BernoulliB[n]/(n+4)];
Array[A227574, 100, 0] (* Paolo Xausa, Dec 08 2023 *)
CROSSREFS
Cf. A227573, A027641/A027642, A120086/A120087 (D(4,x) as o.g.f.).
Sequence in context: A063921 A346044 A334402 * A214869 A021632 A248191
KEYWORD
nonn,easy,frac
AUTHOR
Wolfdieter Lang, Jul 17 2013
STATUS
approved