login
A227215
Smallest sum of the three perpendicular integer sides of a rectangular parallelepiped of volume n.
2
3, 4, 5, 5, 7, 6, 9, 6, 7, 8, 13, 7, 15, 10, 9, 8, 19, 8, 21, 9, 11, 14, 25, 9, 11, 16, 9, 11, 31, 10, 33, 10, 15, 20, 13, 10, 39, 22, 17, 11, 43, 12, 45, 15, 11, 26, 49, 11, 15, 12, 21, 17, 55, 12, 17, 13, 23, 32, 61, 12, 63, 34, 13, 12, 19, 16, 69, 21, 27, 14, 73, 13, 75, 40, 13
OFFSET
1,1
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Wikipedia, Parallelepiped
EXAMPLE
a(24)=9 since 9=2+3+4 is the smallest sum of all possible parallelepipeds having 24=2*3*4 as volume.
MATHEMATICA
a[n_] := Block[{x, y, z}, Min[Total /@ ({x, y, z} /. List@ ToRules@ Reduce[ x*y*z == n && x >= y >= z > 0, {x, y, z}, Integers])]; Array[a, 75] (* Giovanni Resta, Sep 19 2013 *)
PROG
(PARI) a(n) = {smin = 3*n; for (i = 1, n, for (j = 1, i, for (k = 1, j, if (i*j*k == n, smin = min (smin, i+j+k)); ); ); ); return (smin); } \\ Michel Marcus, Sep 23 2013
(PARI) a(n)=my(m=n+2, d); fordiv(n, x, d=divisors(n/x); m=min(m, d[(#d+1)\2]+d[#d\2+1]+x)); m \\ Charles R Greathouse IV, Sep 23 2013
CROSSREFS
Sequence in context: A061146 A332065 A082514 * A229445 A323743 A261017
KEYWORD
nonn
AUTHOR
Carmine Suriano, Sep 19 2013
STATUS
approved