login
A332065
Infinite square array where row n lists the integers whose n-th power is the sum of distinct n-th powers of positive integers; read by falling antidiagonals.
11
3, 4, 5, 5, 7, 6, 6, 9, 9, 15, 7, 10, 12, 25, 12, 8, 11, 13, 27, 23, 25, 9, 12, 14, 29, 24, 28, 40, 10, 13, 15, 30, 28, 32, 43, 84, 11, 14, 16, 31, 29, 34, 44, 85, 47, 12, 15, 17, 33, 30, 35, 45, 86, 49, 63, 13, 16, 18, 35, 31, 36, 46, 87, 52, 64, 68
OFFSET
1,1
COMMENTS
Each row contains all sufficiently large integers (Sprague). Sequences A001422, A001476, A046039, A194768, A194769, ... mention the largest number which can't be written as sum of distinct n-th powers for n = 2, 3, 4, 5, 6, ...; see also A001661. Sequence A332066 gives the number of positive integers not in row n.
All positive multiples of any T(n,k) appear later in that row (because if s^n = Sum_{x in S} x^n, then (k*s)^n = Sum_{x in k*S} x^n.
FORMULA
T(1,k) = 2 + k for all k. (Indeed, s^1 = (s-1)^1 + 1 and s-1 > 1 for s > 2.)
T(2,k) = 6 + k for all k >= 3. (Use s^2 = (s-1)^2 + 2*s-1 and A001422, A009003.)
T(3,k) = 9 + k for all k >= 3. (Use max A001476 = 12758 < 24^3.)
T(4,k) = 32 + k for all k >= 13. (Use max A046039 < 48^4.)
T(5,k) = 24 + k for all k >= 4. (Use max(N \ A194768) < 37^5.)
T(6,k) = 30 + k for all k >= 4. (Use max(N \ A194769) < 48^6.)
T(7,k) = 41 + k for all k >= 2.
T(9,k) = 49 + k for all k >= 3.
EXAMPLE
The table reads: (Entries from where on T(n,k+1) = T(n,k)+1 are marked by *.)
n | k=1 2 3 4 5 6 7 8 9 10 11 12 13 ...
---+---------------------------------------------------------------------
1 | 3* 4 5 6 7 8 9 10 11 12 13 14 15 ...
2 | 5 7 9* 10 11 12 13 14 15 16 17 18 19 ...
3 | 6 9 12* 13 14 15 16 17 18 19 20 21 22 ...
4 | 15 25 27 29 30 31 33 35 37 39 41 43 45* ...
5 | 12 23 24 28* 29 30 31 32 33 34 35 36 37 ...
6 | 25 28 32 34* 35 36 37 38 39 40 41 42 43 ...
7 | 40 43* 44 45 46 47 48 49 50 51 52 53 54 ...
8 | 84* 85 86 87 88 89 90 91 92 93 94 95 96 ...
9 | 47 49 52* 53 54 55 56 57 58 59 60 61 62 ...
10 | 63* 64 65 66 67 68 69 70 71 72 73 74 75 ...
11 | 68 73* 74 75 76 77 78 79 80 81 82 83 84 ...
...| ...
Row 1: 3^1 = 2^1 + 1^1, 4^1 = 3^1 + 1^1, 5^1 = 4^1 + 1^1, 6^1 = 5^1 + 1^1, ...
Row 2: 5^2 = 4^2 + 3^2, 7^2 = 6^2 + 3^2 + 2^2, 9^2 = 8^2 + 4^2 + 1^2, ...
Row 3: 6^3 = 5^3 + 4^3 + 3^3, 9^3 = 8^3 + 6^3 + 1, 12^3 = 10^3 + 8^3 + 6^3, ...
Row 4: 15^4 = Sum {14, 9, 8, 6, 4}^4, 25^4 = Sum {21, 20, 12, 10, 8, 6, 2}^4, ...
See the link for other rows.
PROG
(PARI) M332065=Map(); A332065(n, m, r)={if(r, if( m<2^n||m>r^n*(r+n+1)\(n+1), m<2, r=min(sqrtnint(m, n), r), m==r^n || while( !A332065(n, m-r^n, r-=1) && (m<r^n*(r+n+1)\(n+1) || r=0), ); r), m||[m=A004736(n), n=A002260(n)]; mapisdefined(M332065, [n, m], &r), r, n<2, m+2, r=if(m>1, A332065(n, m-1), n+2); until(A332065(n, (r+=1)^n, r-1), ); mapput(M332065, [n, m], r); r)} \\ Calls itself with nonzero (optional) 3rd argument to find by exhaustive search whether r can be written as sum of distinct powers <= m^n. (Comment added by M. F. Hasler, May 25 2020)
CROSSREFS
Cf. A030052 (first column), A001661.
Cf. A009003 (hypotenuse numbers; subsequence of row 2).
Cf. A332066.
Sequence in context: A330101 A330102 A061146 * A082514 A227215 A229445
KEYWORD
nonn,tabl
AUTHOR
M. F. Hasler, Mar 31 2020
EXTENSIONS
More terms from M. F. Hasler, Jul 19 2020
STATUS
approved