login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227060
T(n,k)=Number of nXk -2..2 arrays of 2X2 subblock diagonal sums minus antidiagonal sums for some (n+1)X(k+1) binary array with rows and columns of the latter in lexicographically nondecreasing order
6
4, 10, 10, 20, 40, 20, 35, 124, 124, 35, 56, 329, 643, 329, 56, 84, 777, 2934, 2934, 777, 84, 120, 1673, 11810, 24511, 11810, 1673, 120, 165, 3341, 42295, 183000, 183000, 42295, 3341, 165, 220, 6269, 136553, 1202223, 2625106, 1202223, 136553, 6269, 220
OFFSET
1,1
COMMENTS
Table starts
...4....10......20........35..........56............84..............120
..10....40.....124.......329.........777..........1673.............3341
..20...124.....643......2934.......11810.........42295...........136553
..35...329....2934.....24511......183000.......1202223..........6979049
..56...777...11810....183000.....2625106......33345171........371484306
..84..1673...42295...1202223....33345171.....836488605......18470742252
.120..3341..136553...6979049...371484306...18470742252.....818230288186
.165..6269..402898..36211854..3651371505..358194085953...31887670171357
.220.11164.1099681.170079551.32017940207.6148026957082.1096628939510030
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = (1/6)*n^3 + 1*n^2 + (11/6)*n + 1
k=2: [polynomial of degree 7]
k=3: [polynomial of degree 15]
EXAMPLE
Some solutions for n=3 k=4
..0..1..0.-1....0..1.-2..0....0..0..1.-2....1.-2..0..1....0..1..0..0
..0.-2..0..0....0.-2..1..1....0..1.-2..2....0..0..1.-1....1.-2..1..0
..0..0..1.-1....0..1..0.-1....0..0..1.-1...-1..1.-1..0...-2..1.-1..1
CROSSREFS
Column 1 is A000292(n+1)
Sequence in context: A310335 A352753 A310336 * A278727 A184129 A202581
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Jun 30 2013
STATUS
approved