login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227057
Number of nX3 -2..2 arrays of 2X2 subblock diagonal sums minus antidiagonal sums for some (n+1)X4 binary array with rows and columns of the latter in lexicographically nondecreasing order
1
20, 124, 643, 2934, 11810, 42295, 136553, 402898, 1099681, 2805516, 6748051, 15412421, 33626114, 70430760, 142218700, 277853319, 526833214, 972034792, 1749218167, 3076360168, 5297051430, 8943742393, 14828643583, 24172697248
OFFSET
1,1
COMMENTS
Column 3 of A227060
LINKS
FORMULA
Empirical: a(n) = (1/1307674368000)*n^15 + (1/10897286400)*n^14 + (47/9340531200)*n^13 + (79/479001600)*n^12 + (25931/7185024000)*n^11 + (347/6220800)*n^10 + (143197/228614400)*n^9 + (1567309/304819200)*n^8 + (5780059/186624000)*n^7 + (244579/1741824)*n^6 + (370033369/718502400)*n^5 + (25976963/17107200)*n^4 + (4033604297/1135134000)*n^3 + (958946909/151351200)*n^2 + (55255/8008)*n + 1
EXAMPLE
Some solutions for n=3
..0..1..0....0..0..0....0..1.-1....0..1.-2....0.-2..1....1..0..0....0..1.-1
..1.-1..0....0..0..1....1.-1..0....1.-2..1....0..0..0...-2..1..0....1.-1.-1
.-2..1..0....0..1.-2...-1.-1..0...-1..0..0....0..0..0....0..0..0...-2..0..1
CROSSREFS
Sequence in context: A004634 A222859 A263545 * A263543 A249709 A250648
KEYWORD
nonn
AUTHOR
R. H. Hardin Jun 30 2013
STATUS
approved