login
A226771
Decimal representation of continued fraction [1*2/2, 2*3/2, 3*4/2, 4*5/2,...], whose elements are the triangular numbers (A000217).
2
1, 3, 1, 6, 0, 6, 0, 4, 0, 3, 6, 5, 9, 0, 7, 7, 1, 6, 4, 2, 5, 9, 8, 1, 6, 9, 6, 2, 5, 7, 9, 2, 5, 3, 9, 6, 1, 4, 9, 0, 9, 8, 1, 7, 8, 6, 2, 7, 2, 0, 9, 6, 9, 6, 7, 4, 4, 5, 6, 8, 2, 2, 6, 6, 9, 1, 7, 6, 1, 6, 4, 7, 2, 6, 6, 1, 6, 1, 9, 3, 6, 3, 9, 0, 8, 7, 0, 6, 5, 3, 6, 5, 1, 2, 6, 8, 4, 0, 2, 5, 5, 1, 1, 2, 6
OFFSET
1,2
COMMENTS
1.316060403659077164259816962579... = [1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120,...]
LINKS
MAPLE
with(numtheory); A226771:=proc(q) local a, n; a:=(q+1)*(q+2)/2;
for n from q by -1 to 1 do a:=1/a+n*(n+1)/2; od;
print(evalf(a, 1001)); end: A226771(10^4);
MATHEMATICA
tri[n_] := n (n + 1)/2; RealDigits[ FromContinuedFraction@ tri@ Range@ 29, 10, 111] (* Robert G. Wilson v, Dec 26 2016 *)
RealDigits[FromContinuedFraction[Accumulate[Range[500]]], 10, 120][[1]] (* Harvey P. Dale, Jul 29 2024 *)
CROSSREFS
Cf. A000217.
Sequence in context: A174424 A298330 A210621 * A096614 A011002 A298241
KEYWORD
nonn,cons
AUTHOR
Paolo P. Lava, Jun 17 2013
STATUS
approved