login
A226432
The number of simple permutations of length n in a particular geometric grid class.
4
1, 2, 0, 2, 3, 7, 13, 25, 46, 84, 151, 269, 475, 833, 1452, 2518, 4347, 7475, 12809, 21881, 37274, 63336, 107375, 181657, 306743, 517057, 870168, 1462250, 2453811, 4112479, 6884101, 11510809, 19226950, 32084028, 53489287, 89097893, 148290067, 246615425, 409835844, 680609086
OFFSET
1,2
COMMENTS
This geometric grid class is given by the array [[0,0,1,0],[0,0,0,1],[0,1,-1,0],[1,0,0,-1]]. A picture is given in the LINKS section.
The sequence of all permutations in this class is given by A226431.
FORMULA
G.f.: x+2*x^2+ x^4*(1-x)*(2+x)/(1-x-x^2)^2 (corrected, Joerg Arndt, Jun 26 2013)
a(n) = A191830(n+2)-A000045(n+2), n>=4. - R. J. Mathar, Aug 31 2013
MATHEMATICA
Join[{1, 2}, LinearRecurrence[{2, 1, -2, -1}, {0, 2, 3, 7}, 40]] (* Jean-François Alcover, Jul 21 2018 *)
PROG
(PARI) x='x+O('x^66); Vec(x+2*x^2+(x^4*(1-x)*(2+x))/((1-x-x^2)^2) ) \\ Joerg Arndt, Jun 19 2013
CROSSREFS
Sequence in context: A222753 A274568 A233399 * A072514 A071547 A220222
KEYWORD
nonn,easy
AUTHOR
Jay Pantone, Jun 06 2013
STATUS
approved