login
A226430
The number of simple permutations of length n which avoid 1243 and 2431.
1
1, 2, 0, 2, 4, 10, 21, 44, 89, 178, 352, 692, 1355, 2648, 5171, 10100, 19744, 38646, 75761, 148772, 292653, 576678, 1138240, 2250152, 4454679, 8830640, 17525991, 34820264, 69244864, 137815978, 274487517, 547035452, 1090790465, 2176043098, 4342753696, 8669805020, 17313228899
OFFSET
1,2
FORMULA
G.f.: (x-2*x^2-5*x^3+12*x^4+x^5-8*x^6-3*x^7)/((1-2*x)*(1-x-x^2)^2).
a(n) = -2*A000045(n+1) +A191830(n+2) +2^(n-3), n>2. - R. J. Mathar, Dec 06 2013
MATHEMATICA
Join[{1, 2}, LinearRecurrence[{4, -3, -4, 3, 2}, {0, 2, 4, 10, 21}, 40]] (* Jean-François Alcover, Jul 22 2018 *)
PROG
(PARI) x='x+O('x^66); Vec((x-2*x^2-5*x^3+12*x^4+x^5-8*x^6-3*x^7)/((1-2*x)*(1-x-x^2)^2)) \\ Joerg Arndt, Jun 19 2013
CROSSREFS
The number of all permutations which avoid 1243 and 2431 is A165534.
Sequence in context: A360860 A274414 A079550 * A067648 A279327 A052438
KEYWORD
nonn
AUTHOR
Jay Pantone, Jun 06 2013
STATUS
approved