login
A226111
Composite squarefree numbers n such that the ratio (n - 1/2)/(p(i) + 1/2) is an integer, where p(i) are the prime factors of n.
11
260813, 960323, 4572113, 5991098, 18912713, 37481945, 68688458, 214337813, 1418459963, 1488523838, 1905782603, 1906387718, 2416383938, 3866147051, 6153859058, 6927221438, 10696723538, 12000312419, 24529142138, 43004079563, 43648495313, 54750300413
OFFSET
1,1
COMMENTS
Also composite squarefree numbers n such that (2*p(i)+1) | (2*n-1).
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..62 (terms < 2*10^12)
EXAMPLE
The prime factors of 5991098 are 2, 103, 127 and 229. We see that (5991098 - 1/2)/(2 + 1/2) = 2396439, (5991098 - 1/2)/(103 + 1/2) = 57885, (5991098 - 1/2)/(127 + 1/2) = 46989 and (5991098 - 1/2)/(229 + 1/2) = 26105. Hence 5991098 is in the sequence.
The prime factors of 1123342 are 2, 11 and 51061. We see that(1123342 - 1/2)/(2 + 1/2) = 748895, (1123342 - 1/2)/(11 + 1/2) = 106985 but (1123342 - 1/2)/(51061 + 1/2) = 2246685/102121. Hence 1123342 is not in the sequence.
MAPLE
with(numtheory); A226111:=proc(i, j) local c, d, n, ok, p;
for n from 2 to i do if not isprime(n) then p:=ifactors(n)[2]; ok:=1;
for d from 1 to nops(p) do if p[d][2]>1 or not type((n-j)/(p[d][1]+j), integer) then ok:=0; break; fi; od;
if ok=1 then print(n); fi; fi; od; end: A226111(10^9, 1/2);
KEYWORD
nonn,hard
AUTHOR
Paolo P. Lava, May 27 2013
EXTENSIONS
a(8)-a(22) from Giovanni Resta, Jun 02 2013
STATUS
approved