login
A225157
Denominators of the sequence of fractions f(n) defined recursively by f(1) = 5/1; f(n+1) is chosen so that the sum and the product of the first n terms of the sequence are equal.
2
1, 4, 21, 541, 345181, 136901485261, 21135572172649245550621, 496712610012943408146407697714437299262548141, 271328559212953102170688304392824035451911661168940831351173011072850527195615099225368381
OFFSET
1,2
COMMENTS
Numerators of the sequence of fractions f(n) is A165423(n+1), hence sum(A165423(i+1)/a(i),i=1..n) = product(A165423(i+1)/a(i),i=1..n) = A165423(n+2)/A225164(n) = A176594(n-1)/A225164(n).
FORMULA
a(n) = 5^(2^(n-2)) - product(a(i),i=1..n-1), n > 1 and a(1) = 1.
a(n) = 5^(2^(n-2)) - p(n) with a(1) = 1 and p(n) = p(n-1)*a(n-1) with p(1) = 1.
EXAMPLE
f(n) = 5, 5/4, 25/21, 625/541, ...
5 + 5/4 = 5 * 5/4 = 25/4; 5 + 5/4 + 25/21 = 5 * 5/4 * 25/21 = 625/84; ...
MAPLE
b:=n->5^(2^(n-2)); # n > 1
b(1):=5;
p:=proc(n) option remember; p(n-1)*a(n-1); end;
p(1):=1;
a:=proc(n) option remember; b(n)-p(n); end;
a(1):=1;
seq(a(i), i=1..9);
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Martin Renner, Apr 30 2013
STATUS
approved