login
A118909
a(1) = 4; a(n) is least semiprime > a(n-1)^2.
2
4, 21, 445, 198026, 39214296677, 1537761063871773242347, 2364709089560047865452947255794201194068433, 5591849078247910476736920566826713466552016538943524658263883555662554776622687075541
OFFSET
1,1
COMMENTS
Semiprime analog of A055496 a(1) = 2; a(n) is smallest prime > 2*a(n-1). See also A059785 a(n+1)=prevprime(a(n)^2), with a(1) = 2. With that, of course, there's always a prime between n and 2n, so a(n) < 2^n. The obverse of this is A118908 a(1) = 4; a(n) is greatest semiprime < a(n-1)^2.
EXAMPLE
a(8) = a(7)^2 + 52 and there is no smaller k such that a(7)^2 + k is semiprime.
MATHEMATICA
nxt[n_]:=Module[{sp=n^2+1}, While[PrimeOmega[sp]!=2, sp++]; sp]; NestList[nxt, 4, 7] (* Harvey P. Dale, Oct 22 2012 *)
PROG
(Python)
from itertools import accumulate
from sympy.ntheory.factor_ import primeomega
def nextsemiprime(n):
while primeomega(n + 1) != 2: n += 1
return n + 1
def f(anm1, _): return nextsemiprime(anm1**2)
print(list(accumulate([4]*6, f))) # Michael S. Branicky, Apr 21 2021
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, May 05 2006
STATUS
approved