login
A223415
T(n,k)=4X4X4 triangular graph without horizontal edges coloring a rectangular array: number of nXk 0..9 arrays where 0..9 label nodes of a graph with edges 0,1 0,2 1,3 1,4 2,4 2,5 3,6 3,7 4,7 4,8 5,8 5,9 and every array movement to a horizontal or vertical neighbor moves along an edge of this graph
9
10, 24, 24, 66, 132, 66, 176, 780, 780, 176, 486, 4664, 10496, 4664, 486, 1312, 28060, 139552, 139552, 28060, 1312, 3622, 169124, 1905248, 4222748, 1905248, 169124, 3622, 9792, 1020056, 25615364, 128885376, 128885376, 25615364, 1020056, 9792
OFFSET
1,1
COMMENTS
Table starts
....10........24...........66..............176..................486
....24.......132..........780.............4664................28060
....66.......780........10496...........139552..............1905248
...176......4664.......139552..........4222748............128885376
...486.....28060......1905248........128885376...........8949958604
..1312....169124.....25615364.......3940419696.........612911291636
..3622...1020056....350374768.....120598735372.......42673331495196
..9792...6153860...4718334196....3692032452520.....2927250803834708
.27030..37128748..64553618848..113045815121672...203882215723328784
.73088.224020376.869537910656.3461502762735476.13989519933873595328
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 9*a(n-2) -12*a(n-4) +4*a(n-6)
k=2: a(n) = 9*a(n-1) -17*a(n-2) -10*a(n-3) +26*a(n-4) +10*a(n-5)
k=3: [order 18] for n>19
k=4: [order 31]
k=5: [order 96] for n>97
EXAMPLE
Some solutions for n=3 k=4
..0..1..3..7....1..3..7..4....2..4..7..3....2..4..1..4....7..3..6..3
..1..4..1..4....0..1..3..7....4..7..3..1....4..2..4..8....3..6..3..6
..4..2..0..1....2..4..1..4....7..4..1..3....8..5..8..4....1..3..1..3
CROSSREFS
Sequence in context: A102089 A250797 A250583 * A187629 A175403 A133503
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Mar 20 2013
STATUS
approved