login
A102089
Triangle read by rows: T(n,k) is the number of k-matchings in the C_n X P_3 graph (C_n is the cycle graph on n vertices and P_3 is the path graph on 3 vertices).
2
1, 10, 24, 12, 1, 15, 69, 107, 36, 1, 20, 142, 440, 588, 288, 32, 1, 25, 240, 1125, 2710, 3227, 1645, 240, 1, 30, 363, 2290, 8139, 16446, 18141, 9870, 2148, 108, 1, 35, 511, 4060, 19222, 55867, 99085, 103231, 58310, 15267, 1274, 1, 40, 684, 6560, 38934
OFFSET
2,2
COMMENTS
Row 2n contains 3n+1 terms; row 2n+1 contains 3n+2 terms. Row sums yield A102090 T(2n,3n) yields A102091
REFERENCES
H. Hosoya and A. Motoyama, An effective algorithm for obtaining polynomials for dimer statistics. Application of operator technique on the topological index to two- and three-dimensional rectangular and torus lattices, J. Math. Physics 26 (1985) 157-167 (eq. (51) and Table VII).
FORMULA
The row generating polynomials A[n] satisfy A[n] =(1 + 2t)A[n - 1] + t(3 + 10t + 6t^2)A[n - 2] + t^2*(3 + 7t)A[n - 3] - t^3*( - 1 + 3t + 12t^2 + 10t^3)A[n - 4] - t^5*(3 + 3t + 4t^2)A[n - 5] + t^7*(3 + 2t + 6t^2)A[n - 6] - t^9*(1 - 2t)A[n - 7] - t^12*A[n - 8] G.f.= - z^2*( - 1 - 10t + z^6*t^9 - 3z^5*t^7 - 3z^2*t^2 - 17z^2*t^3 - z^3*t^3 + z^3*t^4 + 3z^4*t^5 + 9z^4*t^6 - 8z^4*t^7 + 33z^3*t^5 - 2z^2*t^4 - 8z^5*t^8 + t^12*z^7 - 4t^8*z^4 + 49t^6*z^3 + 48t^5*z^2 - 3t^9*z^5 - 4t^11*z^6 - 36t^9*z^4 + 40t^7*z^3 + 40t^6*z^2 - 26t^10*z^5 + 2z^7*t^13 + 8t^12*z^6 - 25zt^2 - 47zt^3 - 12zt^4 - 3zt - 24t^2 - 12t^3)/[(z^2*t^3 - 1 - zt)(z^6*t^9 - z^5*t^7 + z^5*t^6 - 5z^4*t^6 - 3z^4*t^5 - 2z^4*t^4 - 2z^3*t^4 + z^3*t^3 + 5z^2*t^3 + z^3*t^2 + 7z^2*t^2 + 2z^2*t + 3zt + z - 1)].
EXAMPLE
T(2,3)=12 because in the graph C_2 X P_3 with vertex set {A,B,C,A',B',C'} and edge set {AB,AC,A'B',B'C',a,a',b,b',c,c'}, where a and a' are two edges between A and A', b and b' are two edges between B and B' and c and c' are two edges between C and C', we have the following twelve3-matchings (as a matter of fact they are perfect matchings): eight 3-matchings by taking one edge from each of the pairs {a,a'},{b,b'} and {c,c'}; two 3-matchings by taking AB, A'B' and either edge from the pair {c,c'}; two 3-matchings by taking BC, B'C' and either edge from the pair {a,a'}.
Triangle starts:
1, 10, 24, 12;
1, 15, 69, 107, 36;
1, 20, 142, 440, 588, 288, 32;
1, 25, 240, 1125, 2710, 3227, 1645, 240;
MAPLE
G:= - z^2*( - 1 - 10*t + z^6*t^9 - 3*z^5*t^7 - 3*z^2*t^2 - 17*z^2*t^3 - z^3*t^3 + z^3*t^4 + 3*z^4*t^5 + 9*z^4*t^6 - 8*z^4*t^7 + 33*z^3*t^5 - 2*z^2*t^4 - 8*z^5*t^8 + t^12*z^7 - 4*t^8*z^4 + 49*t^6*z^3 + 48*t^5*z^2 - 3*t^9*z^5 - 4*t^11*z^6 - 36*t^9*z^4 + 40*t^7*z^3 + 40*t^6*z^2 - 26*t^10*z^5 + 2*z^7*t^13 + 8*t^12*z^6 - 25*z*t^2 - 47*z*t^3 - 12*z*t^4 - 3*z*t - 24*t^2 - 12*t^3)/(z^2*t^3 - 1 - z*t)/(z^6*t^9 - z^5*t^7 + z^5*t^6 - 5*z^4*t^6 - 3*z^4*t^5 - 2*z^4*t^4 - 2*z^3*t^4 + z^3*t^3 + 5*z^2*t^3 + z^3*t^2 + 7*z^2*t^2 + 2*z^2*t + 3*z*t + z - 1):
Gser:=simplify(series(G, z=0, 13)): for n from 2 to 9 do P[n]:=coeff(Gser, z^n) od: b:=proc(n) if n mod 2 = 0 then 1 + 3*n/2 else 1 + b(n - 1) fi end:for n from 2 to 9 do seq(coeff(t*P[n], t^k), k=1..b(n)) od; # yields sequence in triangular form
CROSSREFS
Sequence in context: A300150 A187621 A231880 * A250797 A250583 A223415
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Dec 29 2004
STATUS
approved