login
A222755
Greatest odd number k such that difference between halving and tripling steps in Collatz (3x+1) trajectory of k is n, or 0 if there is no such k.
3
1, 0, 0, 5, 0, 21, 17, 85, 113, 341, 453, 1365, 1813, 5461, 7281, 21845, 29125, 87381, 116501, 349525, 466033, 1398101, 1864133, 5592405, 7456533, 22369621, 29826161, 89478485, 119304645, 357913941, 477218581, 1431655765
OFFSET
0,4
COMMENTS
Note that a(n) <= 2^n, with equality only for n = 0.
MATHEMATICA
Collatz[n_] := NestWhileList[If[EvenQ[#], #/2, 3 # + 1] &, n, # > 1 &]; nn = 15; t = Table[0, {nn}]; Do[c = Collatz[n]; e = Select[c, EvenQ]; diff = 2*Length[e] - Length[c]; If[diff < nn - 1, t[[diff + 2]] = n], {n, 1, 2^(nn - 1), 2}]; t
CROSSREFS
KEYWORD
nonn
AUTHOR
T. D. Noe, Mar 04 2013
EXTENSIONS
a(31) added - T. D. Noe, Mar 05 2013
STATUS
approved