login
A222754
Least odd number k such that difference between halving and tripling steps in Collatz (3x+1) trajectory of k is n, or 0 if there is no such k.
4
1, 0, 0, 3, 0, 13, 7, 9, 19, 25, 33, 43, 39, 79, 105, 135, 123, 169, 159, 295, 283, 111, 223, 297, 175, 103, 91, 121, 31, 27, 55, 73, 97, 129, 171, 231, 313, 411, 543, 327, 649, 859, 763, 1017, 1351, 1215, 703, 937, 871, 1161, 2223, 3097, 2631, 3567, 3175, 4233
OFFSET
0,4
MATHEMATICA
Collatz[n_] := NestWhileList[If[EvenQ[#], #/2, 3 # + 1] &, n, # > 1 &]; nn = 51; t = Table[0, {nn}]; n = -1; While[Min[Drop[t, 5]] == 0, n = n + 2; c = Collatz[n]; e = Select[c, EvenQ]; diff = 2*Length[e] - Length[c]; If[diff < nn - 1 && t[[diff + 2]] == 0, t[[diff + 2]] = n]]; t
CROSSREFS
KEYWORD
nonn
AUTHOR
T. D. Noe, Mar 04 2013
STATUS
approved