Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Nov 21 2022 10:52:35
%S 1,0,2,3,3,11,10,26,32,51,90,117,198,283,417,610,890,1284,1848,2615,
%T 3716,5217,7289,10222,14158,19514,26882,36805,50131,68428,92466,
%U 125128,168093,225775,302171,402876,536730,711601,942009,1243513,1638395,2152828,2823004
%N G.f.: exp( Sum_{n>=1} A005063(n)*x^n/n ), where A005063(n) = sum of squares of primes dividing n.
%C Euler transform of A061397. - _Peter Luschny_, Nov 21 2022
%H Paul D. Hanna, <a href="/A219224/b219224.txt">Table of n, a(n) for n = 0..1000</a>
%e G.f.: A(x) = 1 + 2*x^2 + 3*x^3 + 3*x^4 + 11*x^5 + 10*x^6 + 26*x^7 + 32*x^8 +...
%e where
%e log(A(x)) = 4*x^2/2 + 9*x^3/3 + 4*x^4/4 + 25*x^5/5 + 13*x^6/6 + 49*x^7/7 + 4*x^8/8 + 9*x^9/9 + 29*x^10/10 + 121*x^11/11 + 13*x^12/12 + 169*x^13/13 + 53*x^14/14 + 34*x^15/15 +...+ A005063(n)*x^n/n +...
%p # The function EulerTransform is defined in A358369.
%p a := EulerTransform(n -> ifelse(isprime(n), n, 0)):
%p seq(a(n), n = 0..42); # _Peter Luschny_, Nov 21 2022
%t a[n_] := SeriesCoefficient[ Exp[ Sum[ DivisorSum[k, Boole[PrimeQ[#]] * #^2&] * x^k/k, {k, 1, n+1}]], {x, 0, n}]; Table[a[n], {n, 0, 42}] (* _Jean-François Alcover_, Jul 11 2017, from PARI *)
%o (PARI) {a(n)=polcoeff(exp(sum(k=1,n+1,sumdiv(k,d,isprime(d)*d^2)*x^k/k)+x*O(x^n)),n)}
%o for(n=0,50,print1(a(n),", "))
%Y Cf. A000607, A005063, A220427, A061397.
%K nonn
%O 0,3
%A _Paul D. Hanna_, Nov 15 2012