login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A219224
G.f.: exp( Sum_{n>=1} A005063(n)*x^n/n ), where A005063(n) = sum of squares of primes dividing n.
7
1, 0, 2, 3, 3, 11, 10, 26, 32, 51, 90, 117, 198, 283, 417, 610, 890, 1284, 1848, 2615, 3716, 5217, 7289, 10222, 14158, 19514, 26882, 36805, 50131, 68428, 92466, 125128, 168093, 225775, 302171, 402876, 536730, 711601, 942009, 1243513, 1638395, 2152828, 2823004
OFFSET
0,3
COMMENTS
Euler transform of A061397. - Peter Luschny, Nov 21 2022
LINKS
EXAMPLE
G.f.: A(x) = 1 + 2*x^2 + 3*x^3 + 3*x^4 + 11*x^5 + 10*x^6 + 26*x^7 + 32*x^8 +...
where
log(A(x)) = 4*x^2/2 + 9*x^3/3 + 4*x^4/4 + 25*x^5/5 + 13*x^6/6 + 49*x^7/7 + 4*x^8/8 + 9*x^9/9 + 29*x^10/10 + 121*x^11/11 + 13*x^12/12 + 169*x^13/13 + 53*x^14/14 + 34*x^15/15 +...+ A005063(n)*x^n/n +...
MAPLE
# The function EulerTransform is defined in A358369.
a := EulerTransform(n -> ifelse(isprime(n), n, 0)):
seq(a(n), n = 0..42); # Peter Luschny, Nov 21 2022
MATHEMATICA
a[n_] := SeriesCoefficient[ Exp[ Sum[ DivisorSum[k, Boole[PrimeQ[#]] * #^2&] * x^k/k, {k, 1, n+1}]], {x, 0, n}]; Table[a[n], {n, 0, 42}] (* Jean-François Alcover, Jul 11 2017, from PARI *)
PROG
(PARI) {a(n)=polcoeff(exp(sum(k=1, n+1, sumdiv(k, d, isprime(d)*d^2)*x^k/k)+x*O(x^n)), n)}
for(n=0, 50, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 15 2012
STATUS
approved