login
A218853
Triangle read by rows, coefficients of the Bernoulli polynomials B_{n}(x) times A144845(n) in increasing powers.
1
1, -1, 2, 1, -6, 6, 0, 1, -3, 2, -1, 0, 30, -60, 30, 0, -1, 0, 10, -15, 6, 1, 0, -21, 0, 105, -126, 42, 0, 1, 0, -7, 0, 21, -21, 6, -1, 0, 20, 0, -70, 0, 140, -120, 30, 0, -3, 0, 20, 0, -42, 0, 60, -45, 10, 5, 0, -99, 0, 330, 0, -462, 0, 495, -330, 66, 0, 5, 0
OFFSET
0,3
COMMENTS
See A213615 for the polynomials in decreasing powers.
MAPLE
A218853_row := n -> seq(coeff(numer(bernoulli(n, x)), x, j), j=0..n):
seq(A218853_row(n), n = 0..10); # Peter Luschny, Nov 22 2015
MATHEMATICA
Flatten[Table[ p = CoefficientList[BernoulliB[n, x], x]; (LCM @@ Denominator[p])*p, {n, 0, 10}]]
CROSSREFS
Cf. A213615.
Sequence in context: A028940 A376980 A374625 * A048998 A213615 A049019
KEYWORD
sign,tabl
AUTHOR
T. D. Noe, Nov 07 2012
STATUS
approved