login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214662
Greatest prime divisor of 1 + 2^2 + 3^3 + ... + n^n.
1
5, 2, 3, 3413, 50069, 8089, 487, 2099, 10405071317, 1274641129, 164496735539, 3514531963, 15624709, 23747111, 10343539, 56429700667, 1931869473647715169, 2383792821710269, 144326697012150473, 2053857208873393249, 128801386946535261205906957, 2298815880166789
OFFSET
2,1
LINKS
FORMULA
a(n) = A006530(A001923(n)).
EXAMPLE
a(2) = 5 divides 1 + 2^2 ;
a(3) = 2 divides 1 + 2^2 + 3^3 = 32 ;
a(4) = 3 divides 1 + 2^2 + 3^3 + 4^4 = 288 = 2^5*3^2 ;
a(5) = 3413 divides 1 + 2^2 + 3^3 + 4^4 + 5^5 = 3413.
a(13) = 3514531963 divides 1 + 2^2 + 3^3 + ... + 13^13 = 88799 * 3514531963.
MAPLE
with (numtheory):
s:= proc(n) option remember; `if`(n=1, 1, s(n-1)+n^n) end:
a:= n-> max(factorset(s(n))[]):
seq (a(n), n=2..23); # Alois P. Heinz, Jul 24 2012
MATHEMATICA
s = 1; Table[s = s + n^n; FactorInteger[s][[-1, 1]], {n, 2, 24}] (* T. D. Noe, Jul 25 2012 *)
Module[{nn=30, lst}, lst=Table[n^n, {n, nn}]; Table[FactorInteger[Total[Take[lst, k]]][[-1, 1]], {k, 2, nn}]] (* Harvey P. Dale, Oct 09 2022 *)
PROG
(PARI) a(n) = vecmax(factor(sum(k=1, n, k^k))[, 1]); \\ Michel Marcus, Feb 09 2020
(Magma) [Max(PrimeDivisors(&+[k^k:k in [1..n]])):n in [2..23]]; // Marius A. Burtea, Feb 09 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Jul 24 2012
STATUS
approved