login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213023
Expansion of psi(x)^2 * psi(-x^3) / chi(-x^2) in powers of x where psi(), chi() are Ramanujan theta functions.
4
1, 2, 2, 3, 2, 2, 4, 4, 5, 3, 4, 5, 4, 6, 4, 4, 5, 7, 5, 3, 6, 8, 8, 8, 6, 3, 7, 6, 10, 6, 5, 10, 4, 8, 7, 8, 10, 6, 9, 8, 5, 10, 10, 11, 6, 9, 11, 6, 12, 9, 8, 8, 10, 9, 6, 6, 15, 12, 9, 9, 6, 13, 10, 13, 10, 7, 14, 12, 12, 8, 7, 13, 10, 16, 9, 10, 10, 12
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-17/24) * eta(q^2)^3 * eta(q^3) * eta(q^4) * eta(q^12) / (eta(q)^2 * eta(q^6)) in powers of q.
Euler transform of period 12 sequence [ 2, -1, 1, -2, 2, -1, 2, -2, 1, -1, 2, -3, ...].
a(n) = A180312(3*n + 1).
EXAMPLE
1 + 2*x + 2*x^2 + 3*x^3 + 2*x^4 + 2*x^5 + 4*x^6 + 4*x^7 + 5*x^8 + 3*x^9 + ...
q^17 + 2*q^41 + 2*q^65 + 3*q^89 + 2*q^113 + 2*q^137 + 4*q^161 + 4*q^185 + ...
MATHEMATICA
QP := QPochhammer; a[n_]:=SeriesCoefficient[(QP[q^2]^3*QP[q^3]*QP[q^4] *QP[q^12])/(QP[q]^2*QP[q^6]), {q, 0, n}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Jan 07 2018 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^3 + A) * eta(x^4 + A) * eta(x^12 + A) / (eta(x + A)^2 * eta(x^6 + A)), n))}
CROSSREFS
Cf. A180312.
Sequence in context: A339492 A069360 A175509 * A068050 A210967 A343534
KEYWORD
nonn
AUTHOR
Michael Somos, Jun 03 2012
STATUS
approved