login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213022
Expansion of phi(x)^2 * psi(x) in powers of x where phi(), psi() are Ramanujan theta functions.
8
1, 5, 8, 5, 8, 16, 9, 8, 16, 8, 17, 24, 8, 16, 16, 13, 24, 16, 16, 24, 32, 13, 8, 32, 8, 24, 40, 16, 25, 24, 24, 24, 32, 16, 16, 40, 17, 32, 32, 16, 40, 48, 16, 16, 32, 21, 48, 32, 16, 24, 40, 32, 24, 56, 24, 45, 40, 16, 32, 24, 32, 40, 48, 16, 32, 64, 25, 24
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
The body-centered cubic (b.c.c. also known as D3*) lattice is the set of all triples [a, b, c] where the entries are all integers or all one half an odd integer.
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1/8) * eta(q^2)^12 / (eta(q)^5 * eta(q^4)^4) in powers of q.
Expansion of q^(-1/16) times theta series of b.c.c. lattice with respect to point [0, 0, 1/4] in powers of q^(1/2).
Euler transform of period 4 sequence [ 5, -7, 5, -3, ...].
6 * a(n) = A005875(8*n + 1).
EXAMPLE
a(0) = 1 since the norm squared of point [0, 0, 0] with respect to [0, 0, 1/4] is 1/16 = 1/16 + 1/2*0.
a(1) = 5 since the norm squared of points [-1/2, -1/2, -1/2], [-1/2, 1/2, -1/2], [0, 0, -1], [1/2, -1/2, -1/2], [1/2, 1/2, -1/2] with respect to [0, 0, 1/4] is 9/16 = 1/16 + 1/2*1.
1 + 5*x + 8*x^2 + 5*x^3 + 8*x^4 + 16*x^5 + 9*x^6 + 8*x^7 + 16*x^8 + 8*x^9 + ...
q + 5*q^9 + 8*q^17 + 5*q^25 + 8*q^33 + 16*q^41 + 9*q^49 + 8*q^57 + 16*q^65 + ...
MATHEMATICA
CoefficientList[QPochhammer[q^2]^12/(QPochhammer[q]^5*QPochhammer[q^4]^4) + O[q]^70, q] (* Jean-François Alcover, Nov 05 2015 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^12 / (eta(x + A)^5 * eta(x^4 + A)^4), n))}
CROSSREFS
Cf. A005875.
Sequence in context: A101465 A010719 A246903 * A198732 A202348 A273817
KEYWORD
nonn
AUTHOR
Michael Somos, Jun 03 2012
STATUS
approved