login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A212912
Numbers k such that 3^(m+3) == 9 (mod m) where m = (k-1)^2 - 1.
0
3, 5, 7, 11, 17, 37, 47, 53, 67, 97, 101, 121, 211, 257, 367, 379, 457, 617, 911, 1091, 1237, 1297, 1361, 1549, 2003, 2557, 2851, 2897, 3517, 3733, 4201, 4357, 5209, 6481, 7621, 8461, 8647, 8689, 10253, 10457, 10631, 11953, 13729, 14401, 14951, 17431, 17837
OFFSET
1,1
COMMENTS
Composites begin: 121, 108781, 155365, 267547, 2774521, 3166087, 3225601, 4907701, 8341201, 10712857, 11035921, 13216141, 17559829, 21708961, 29641921, 31116241, 31150351, ... are all composite terms congruent to 1 (mod 3)?
MATHEMATICA
Join[{3}, Select[Range[4, 20000], PowerMod[3, (#-1)^2+2, (#-1)^2-1]==9&]] (* Harvey P. Dale, Dec 07 2019 *)
PROG
(PARI) for(n=2, 1000, m=n^2-1; if(Mod(3, m)^(m+3)==9, print(n+1)));
CROSSREFS
Sequence in context: A116457 A037155 A282632 * A356751 A038944 A124081
KEYWORD
nonn
AUTHOR
Alzhekeyev Ascar M, May 30 2012
EXTENSIONS
More terms from Harvey P. Dale, Dec 07 2019
STATUS
approved