login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A037155
a(n) = n!-p, where p is the largest prime < (n!-1).
6
3, 5, 7, 11, 17, 31, 13, 11, 13, 13, 23, 17, 47, 53, 59, 41, 101, 31, 31, 73, 89, 73, 149, 37, 43, 101, 31, 79, 61, 163, 47, 193, 113, 127, 97, 79, 73, 83, 131, 79, 109, 109, 53, 89, 79, 103, 59, 97, 179, 67, 59, 127, 61, 461, 277, 109, 137, 139, 71, 71, 101, 359
OFFSET
3,1
COMMENTS
Analogous to the lesser Fortunate numbers and like them, all entries so far are primes.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 3..1000
Antonín Čejchan, Michal Křížek, and Lawrence Somer, On Remarkable Properties of Primes Near Factorials and Primorials, Journal of Integer Sequences, Vol. 25 (2022), Article 22.1.4.
FORMULA
a(n) >= n. - Seiichi Manyama, Mar 21 2018
EXAMPLE
a(4) = 4!-19 = 24-19 = 5.
MATHEMATICA
PrevPrime[ n_Integer ] := (k=n-1; While[ !PrimeQ[ k ], k-- ]; Return[ k ]); f[ n_Integer ] := (p = n! - 1; q = NextPrime[ p ]; Return[ p - q + 1 ]); Table[ f[ n ], {n, 3, 75} ]
f[n_]:=Module[{nf=n!}, nf-NextPrime[nf-1, -1]]; f/@Range[3, 90] (* Harvey P. Dale, Mar 20 2011 *)
PROG
(PARI) a(n)=my(N=n!); N-precprime(N-3) \\ Charles R Greathouse IV, Jan 28 2018
(Python)
from sympy import factorial, prevprime
def a(n): fn = factorial(n); return fn - prevprime(fn-1)
print([a(n) for n in range(3, 65)]) # Michael S. Branicky, May 22 2022
CROSSREFS
Cf. A055211.
Sequence in context: A145987 A088083 A116457 * A282632 A212912 A356751
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from James A. Sellers, Jul 06 2000
STATUS
approved