login
A211280
Numerator of prime(n+1) - prime(n)/2.
2
2, 7, 9, 15, 15, 21, 21, 27, 35, 33, 43, 45, 45, 51, 59, 65, 63, 73, 75, 75, 85, 87, 95, 105, 105, 105, 111, 111, 117, 141, 135, 143, 141, 159, 153, 163, 169, 171, 179, 185, 183, 201, 195, 201, 201, 223, 235, 231, 231, 237, 245, 243, 261, 263, 269, 275, 273, 283, 285, 285, 303, 321, 315, 315, 321, 345, 343, 357, 351, 357, 365, 375, 379
OFFSET
1,1
COMMENTS
Second row of the inverse semi-binomial transform of A000040(n+1) as introduced in A213268.
The list of denominators is 1, 2, 2, ... (2 repeated), so a(n) = A210497(n) for n>1.
a(n) - prime(n) = 2*prime(n+1)-prime(n)-prime(n) are prime differences (A001223) multiplied by 2, and therefore multiples of 4.
FORMULA
a(n) ~ n log n. Apart from the first term, a(n) = 2*prime(n+1) - prime(n). - Charles R Greathouse IV, Jul 10 2012
a(n) = prime(n+2) - A036263(n), n>1. - R. J. Mathar, Jul 10 2012
MAPLE
A211280 := proc(n)
ithprime(n+1)-ithprime(n)/2 ;
numer(%) ;
end proc: # R. J. Mathar, Jul 10 2012
MATHEMATICA
Numerator[#[[2]]-#[[1]]/2]&/@Partition[Prime[Range[80]], 2, 1] (* Harvey P. Dale, Mar 05 2023 *)
CROSSREFS
Denominators are A040000.
Sequence in context: A102994 A226824 A168132 * A294863 A085544 A154789
KEYWORD
nonn,easy,frac
AUTHOR
Paul Curtz, Jul 05 2012
STATUS
approved