OFFSET
1,2
COMMENTS
LINKS
G. C. Greubel, Rows n = 1..30 of the triangle, flattened
FORMULA
u(n,x) = x*u(n-1,x) + (x+1)*v(n-1,x) + 1,
v(n,x) = x*u(n-1,x) + v(n-1,x) + 1,
where u(1,x) = 1, v(1,x) = 1.
T(n, k) = [x^k]( v(n,x) ), where v(n, x) = (1+x)*v(n-1, x) + x^2*v(n-2, x) + 1, v(1, x) = 1, and v(2, x) = 2 + x. - G. C. Greubel, May 24 2021
EXAMPLE
First few rows are:
1;
2, 1;
3, 3, 2;
4, 6, 7, 3;
5, 10, 16, 13, 5;
6, 15, 30, 35, 25, 8;
7, 21, 50, 75, 76, 46, 13;
First few polynomials v(n,x) are:
v(1, x) = 1;
v(2, x) = 2 + 1*x;
v(3, x) = 3 + 3*x + 2*x^2;
v(4, x) = 4 + 6*x + 7*x^2 + 3*x^3;
v(5, x) = 5 + 10*x + 16*x^2 + 13*x^3 + 5*x^4;
MATHEMATICA
(* First program *)
u[1, x_]:= 1; v[1, x_]:= 1; z = 16;
u[n_, x_]:= x*u[n-1, x] + (1+x)*v[n-1, x] + 1;
v[n_, x_]:= x*u[n-1, x] + v[n-1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210565 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210595 *)
(* Second program *)
v[n_, x_]:= v[n, x]= If[n<2, n+1 +n*x, (1+x)*v[n-1, x] +x^2*v[n-2, x] +1];
T[n_]:= CoefficientList[Series[v[n, x], {x, 0, n}], x];
Table[T[n-1], {n, 12}]//Flatten (* G. C. Greubel, May 24 2021 *)
PROG
(Sage)
@CachedFunction
def v(n, x): return n+1+n*x if (n<2) else (1+x)*v(n-1, x) +x^2*v(n-2, x) +1
def T(n): return taylor( v(n, x) , x, 0, n).coefficients(x, sparse=False)
flatten([T(n-1) for n in (1..12)]) # G. C. Greubel, May 24 2021
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 23 2012
STATUS
approved