login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A210458
Expansion of q * (psi(-q^5) / psi(-q))^2 in powers of q where psi() is a Ramanujan theta function.
5
1, 2, 3, 6, 11, 16, 24, 38, 57, 82, 117, 168, 238, 328, 448, 614, 834, 1114, 1480, 1966, 2592, 3384, 4398, 5704, 7361, 9436, 12045, 15344, 19470, 24576, 30922, 38822, 48576, 60548, 75259, 93342, 115454, 142360, 175104, 214958, 263262, 321584, 391993, 476952
OFFSET
1,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (eta(q^2) * eta(q^5) * eta(q^20) / (eta(q) * eta(q^4) * eta(q^10)))^2 in powers of q.
Euler transform of period 20 sequence [ 2, 0, 2, 2, 0, 0, 2, 2, 2, 0, 2, 2, 2, 0, 0, 2, 2, 0, 2, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = (u - v)^4 - u * (1 + u) * (1 + 5*u) * v * (1 + v) * (1 + 5*v).
G.f. is a period 1 Fourier series which satisfies f(-1 / (20 t)) = (1/5) g(t) where q = exp(2 Pi i t) and g() is g.f. of A145740.
G.f.: x * (Product_{k>0} P(5, x^k) * P(20, x^k))^2 where P(n, x) is the n-th cyclotomic polynomial.
A138519(n) = -(-1)^n * a(n). Convolution inverse of A145740.
a(n) ~ exp(2*Pi*sqrt(n/5)) / (2 * 5^(5/4) * n^(3/4)). - Vaclav Kotesovec, Oct 13 2015
Empirical: Sum_{n>=1} a(n)/exp(Pi*n) = -2/5 + (1/5)*sqrt(5). - Simon Plouffe, Mar 02 2021
EXAMPLE
q + 2*q^2 + 3*q^3 + 6*q^4 + 11*q^5 + 16*q^6 + 24*q^7 + 38*q^8 + 57*q^9 + ...
MATHEMATICA
nmax=60; CoefficientList[Series[Product[((1+x^k) * (1-x^(5*k)) * (1+x^(10*k)) / (1-x^(4*k)))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 13 2015 *)
a[n_]:= SeriesCoefficient[(EllipticTheta[2, 0, I*q^(5/2)]/EllipticTheta[ 2, 0, I*Sqrt[q]])^2, {q, 0, n}]; Table[a[n], {n, 1, 50}] (* G. C. Greubel, Dec 07 2017 *)
PROG
(PARI) {a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^5 + A) * eta(x^20 + A) / (eta(x + A) * eta(x^4 + A) * eta(x^10 + A)))^2, n))}
CROSSREFS
Sequence in context: A351203 A138519 A138520 * A228864 A289434 A049794
KEYWORD
nonn
AUTHOR
Michael Somos, Jan 21 2013
STATUS
approved