login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A138520
Expansion of 1 - q * (psi(q^5) / psi(q))^2 in powers of q where psi() is a Ramanujan theta function.
4
1, -1, 2, -3, 6, -11, 16, -24, 38, -57, 82, -117, 168, -238, 328, -448, 614, -834, 1114, -1480, 1966, -2592, 3384, -4398, 5704, -7361, 9436, -12045, 15344, -19470, 24576, -30922, 38822, -48576, 60548, -75259, 93342, -115454, 142360, -175104, 214958, -263262
OFFSET
0,3
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of (phi(-q^5) / phi(-q))^2 * (chi^5(-q) / chi(-q^5)) in powers of q where phi(), chi() are Ramanujan theta functions. - Michael Somos, Sep 16 2015
Expansion of (eta(q^5) / eta(q^2))^3 * eta(q) / eta(q^10) in powers of q.
Euler transform of period 10 sequence [ -1, 2, -1, 2, -4, 2, -1, 2, -1, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (u - v)^2 - u * (1 - v) * (5*u - 4).
G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = (u - v)^4 - u * (1 - u) * (5*u - 4) * v * (1 - v) * (5*v - 4).
G.f. is a period 1 Fourier series which satisfies f(-1 / (10 t)) = (4/5) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A138522.
G.f.: Product_{k>0} P(5,x^k)^2 / ((1 + x^k)^4 * P(10,x^k)) where P(n,x) is the n-th cyclotomic polynomial.
a(n) = - A138519(n) unless n=0. Convolution inverse of A095813.
a(n) = (-1)^n * A228864(n). - Michael Somos, Sep 16 2015
a(n) ~ (-1)^n * exp(2*Pi*sqrt(n/5)) / (2 * 5^(5/4) * n^(3/4)). - Vaclav Kotesovec, Nov 15 2017
EXAMPLE
G.f. = 1 - q + 2*q^2 - 3*q^3 + 6*q^4 - 11*q^5 + 16*q^6 - 24*q^7 + 38*q^8 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ 1 - (EllipticTheta[ 2, 0, q^(5/2)] / EllipticTheta[ 2, 0, q^(1/2)])^2, {q, 0, n}]; (* Michael Somos, Sep 16 2015 *)
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 4, 0, q^5] / EllipticTheta[ 4, 0, q])^2 QPochhammer[ -q^5, q^5] / QPochhammer[ -q, q]^5, {q, 0, n}]; (* Michael Somos, Sep 16 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) / eta(x^10 + A) * ( eta(x^5 + A) / eta(x^2 + A) )^3, n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Mar 23 2008
STATUS
approved