login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A209453
a(n) = Pell(n)*A109041(n) for n>=1, with a(0)=1, where A109041 lists the coefficients in eta(q)^9/eta(q^3)^3.
4
1, -9, 54, -45, -1404, 6264, 1890, -76050, 187272, -8865, -1540944, 6200280, -1621620, -51195330, 109055700, 42125400, -868685040, 2946297888, 74093670, -21584605122, 44912353824, -17376284250, -302040439920, 1069478852112, 249392931480, -7095191496489
OFFSET
0,2
COMMENTS
Compare the g.f. to the Lambert series of A109041:
1 - 9*Sum_{n>=1} Kronecker(n,3)*n^2*x^n/(1-x^n).
LINKS
FORMULA
G.f.: 1 - 9*Sum_{n>=1} Pell(n)*Kronecker(n,3)*n^2*x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)), where A002203(n) = Pell(n-1) + Pell(n+1).
EXAMPLE
G.f.: A(x) = 1 - 9*x + 54*x^2 - 45*x^3 - 1404*x^4 + 6264*x^5 + 1890*x^6 +...
where A(x) = 1 - 1*9*x + 2*27*x^2 - 5*9*x^3 - 12*117*x^4 + 29*216*x^5 + 70*27*x^6 - 169*450*x^7 + 408*459*x^8 +...+ Pell(n)*A109041(n)*^n +...
The g.f. is also given by the identity:
A(x) = 1 - 9*( 1*1*x/(1-2*x-x^2) - 2*4*x^2/(1-6*x^2+x^4) + 12*16*x^4/(1-34*x^4+x^8) - 29*25*x^5/(1-82*x^5-x^10) + 169*49*x^7/(1-478*x^7-x^14) - 408*64*x^8/(1-1154*x^8+x^16) +...).
The values of the symbol Kronecker(n,3) repeat [1,-1,0, ...].
MATHEMATICA
A109041[n_]:= If[n < 1, Boole[n == 0], -9 DivisorSum[n, #^2 KroneckerSymbol[-3, #] &]]; Join[{1}, Table[Fibonacci[n, 2]*A109041[n], {n, 1, 50}]] (* G. C. Greubel, Jan 02 2018 *)
PROG
(PARI) {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)), n)}
{A002203(n)=Pell(n-1)+Pell(n+1)}
{a(n)=polcoeff(1 - 9*sum(m=1, n, Pell(m)*kronecker(m, 3)*m^2*x^m/(1-A002203(m)*x^m+(-1)^m*x^(2*m) +x*O(x^n))), n)}
for(n=0, 40, print1(a(n), ", "))
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Mar 10 2012
STATUS
approved