login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A209451
a(n) = Pell(n)*A034896(n) for n >= 1, with a(0)=1, where A034896 lists the number of solutions to a^2 + b^2 + 3*c^2 + 3*d^2 = n.
4
1, 4, 8, 20, 240, 696, 280, 5408, 21216, 3940, 57072, 275568, 277200, 1873816, 2585024, 4680600, 54616512, 81841608, 10976840, 530008720, 1919331360, 1235646880, 4474673184, 21605633376, 28253665440, 162655527004, 177341693872, 30581480180, 2953208968320
OFFSET
0,2
COMMENTS
Compare g.f. to the Lambert series of A034896:
1 + 4*Sum_{n>=1} Chi(n,3)*n*x^n/(1 - (-x)^n).
Here Chi(n,3) = principal Dirichlet character modulo 3.
LINKS
FORMULA
G.f.: 1 + 4*Sum_{n>=1} Pell(n)*Chi(n,3)*n*x^n/(1 - A002203(n)*(-x)^n + (-1)^n*x^(2*n)), where A002203(n) = Pell(n-1) + Pell(n+1).
EXAMPLE
G.f.: A(x) = 1 + 4*x + 8*x^2 + 20*x^3 + 240*x^4 + 696*x^5 + 280*x^6 + ...
where A(x) = 1 + 1*4*x + 2*4*x^2 + 5*4*x^3 + 12*20*x^4 + 29*24*x^5 + 70*4*x^6 + ... + Pell(n)*A034896(n)*x^n + ...
The g.f. is also given by the identity:
A(x) = 1 + 4*( 1*1*x/(1+2*x-x^2) + 2*2*x^2/(1-6*x^2+x^4) + 12*4*x^4/(1-34*x^4+x^8) + 29*5*x^5/(1+82*x^5-x^10) + 169*7*x^7/(1+478*x^7-x^14) + 408*8*x^8/(1-1154*x^8+x^16) + ...).
The values of the Dirichlet character Chi(n,3) repeat [1,1,0,...].
MATHEMATICA
A034896[n_]:= SeriesCoefficient[(EllipticTheta[3, 0, q]*EllipticTheta[3, 0, q^3])^2, {q, 0, n}]; Join[{1}, Table[Fibonacci[n, 2]*A034896[n], {n, 1, 50}]] (* G. C. Greubel, Dec 24 2017 *)
PROG
(PARI) {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)), n)}
{A002203(n)=Pell(n-1)+Pell(n+1)}
{a(n)=polcoeff(1 + 4*sum(m=1, n, Pell(m)*kronecker(m, 3)^2*m*x^m/(1-A002203(m)*(-x)^m+(-1)^m*x^(2*m) +x*O(x^n))), n)}
for(n=0, 61, print1(a(n), ", "))
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 10 2012
STATUS
approved