Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Dec 25 2017 04:06:15
%S 1,4,8,20,240,696,280,5408,21216,3940,57072,275568,277200,1873816,
%T 2585024,4680600,54616512,81841608,10976840,530008720,1919331360,
%U 1235646880,4474673184,21605633376,28253665440,162655527004,177341693872,30581480180,2953208968320
%N a(n) = Pell(n)*A034896(n) for n >= 1, with a(0)=1, where A034896 lists the number of solutions to a^2 + b^2 + 3*c^2 + 3*d^2 = n.
%C Compare g.f. to the Lambert series of A034896:
%C 1 + 4*Sum_{n>=1} Chi(n,3)*n*x^n/(1 - (-x)^n).
%C Here Chi(n,3) = principal Dirichlet character modulo 3.
%H G. C. Greubel, <a href="/A209451/b209451.txt">Table of n, a(n) for n = 0..1000</a>
%F G.f.: 1 + 4*Sum_{n>=1} Pell(n)*Chi(n,3)*n*x^n/(1 - A002203(n)*(-x)^n + (-1)^n*x^(2*n)), where A002203(n) = Pell(n-1) + Pell(n+1).
%e G.f.: A(x) = 1 + 4*x + 8*x^2 + 20*x^3 + 240*x^4 + 696*x^5 + 280*x^6 + ...
%e where A(x) = 1 + 1*4*x + 2*4*x^2 + 5*4*x^3 + 12*20*x^4 + 29*24*x^5 + 70*4*x^6 + ... + Pell(n)*A034896(n)*x^n + ...
%e The g.f. is also given by the identity:
%e A(x) = 1 + 4*( 1*1*x/(1+2*x-x^2) + 2*2*x^2/(1-6*x^2+x^4) + 12*4*x^4/(1-34*x^4+x^8) + 29*5*x^5/(1+82*x^5-x^10) + 169*7*x^7/(1+478*x^7-x^14) + 408*8*x^8/(1-1154*x^8+x^16) + ...).
%e The values of the Dirichlet character Chi(n,3) repeat [1,1,0,...].
%t A034896[n_]:= SeriesCoefficient[(EllipticTheta[3, 0, q]*EllipticTheta[3, 0, q^3])^2, {q, 0, n}]; Join[{1}, Table[Fibonacci[n, 2]*A034896[n], {n, 1, 50}]] (* _G. C. Greubel_, Dec 24 2017 *)
%o (PARI) {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)),n)}
%o {A002203(n)=Pell(n-1)+Pell(n+1)}
%o {a(n)=polcoeff(1 + 4*sum(m=1,n,Pell(m)*kronecker(m,3)^2*m*x^m/(1-A002203(m)*(-x)^m+(-1)^m*x^(2*m) +x*O(x^n))),n)}
%o for(n=0,61,print1(a(n),", "))
%Y Cf. A034896, A205971, A205884, A209447, A209450, A209452, A204270, A000129 (Pell), A002203.
%K nonn
%O 0,2
%A _Paul D. Hanna_, Mar 10 2012