login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206349
Even numbers k such that 6k+1, 12k+1, 18k+1, 36k+1 and 72k+1 are all primes.
8
380, 506, 3796, 6006, 8976, 9186, 10920, 12896, 14476, 14800, 15386, 32326, 38460, 39536, 40420, 41456, 43430, 60076, 74676, 76986, 82530, 87390, 99486, 107926, 112840, 126996, 127920, 144326, 179566, 181986, 188526, 193006, 194616, 205200, 217520, 230370
OFFSET
1,1
COMMENTS
(6n+1)*(12n+1)*(18n+1)*(36n+1)*(72n+1) is a Carmichael number for all n in this sequence.
More precisely, these products are in A112428 = A002997 intersect A014614. - M. F. Hasler, Apr 14 2015
LINKS
Jack Chernick, On Fermat's simple theorem, Bull. Amer. Math. Soc., Volume 45, Number 4 (1939), pp. 269-274.
MATHEMATICA
Select[Range[250000], PrimeQ[6 #+1] && PrimeQ[12 #+1] && PrimeQ[18 #+1] && PrimeQ[36 #+1] && PrimeQ[72 #+1] && Mod[#, 2] == 0&]
PROG
(PARI) is_A206349(n, c=72)=!bittest(n, 0)&&!until(bittest(c\=2, 0)&&9>c+=3, isprime(n*c+1)||return) \\ M. F. Hasler, Apr 14 2015
CROSSREFS
Sequence in context: A027503 A340200 A099728 * A252130 A252123 A158597
KEYWORD
nonn,easy
AUTHOR
STATUS
approved